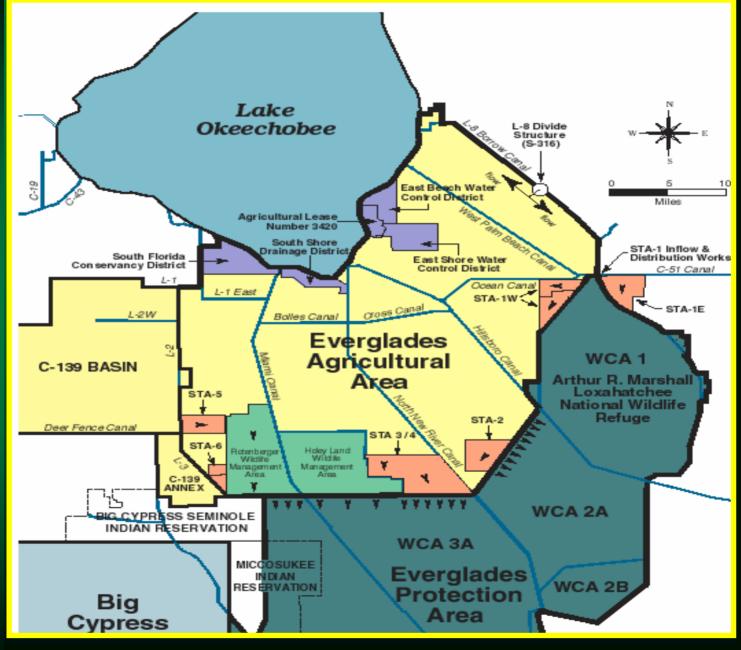
Lessons Learned from Large-scale Wetland Design, Construction and Operation

November 2002 Gary Goforth, P.E., Ph.D. Chief Consulting Engineer South Florida Water Management District

Everglades Construction Project

Lessons learned

- Planning
- Design
- Construction
- Operation

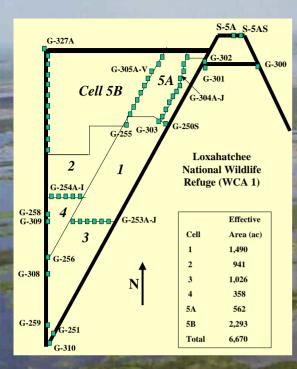

Everglades Restoration

- 4 major problems facing Everglades ecosystem:
 - Reduction in spatial extent of wetlands
 - Degradation of water quality (e.g., phosphorus and mercury)
 - Disruption of hydropatterns
 (i.e., timing, volume & distribution)
 - Infestation by exotic plant species
- ECP designed to address first 3

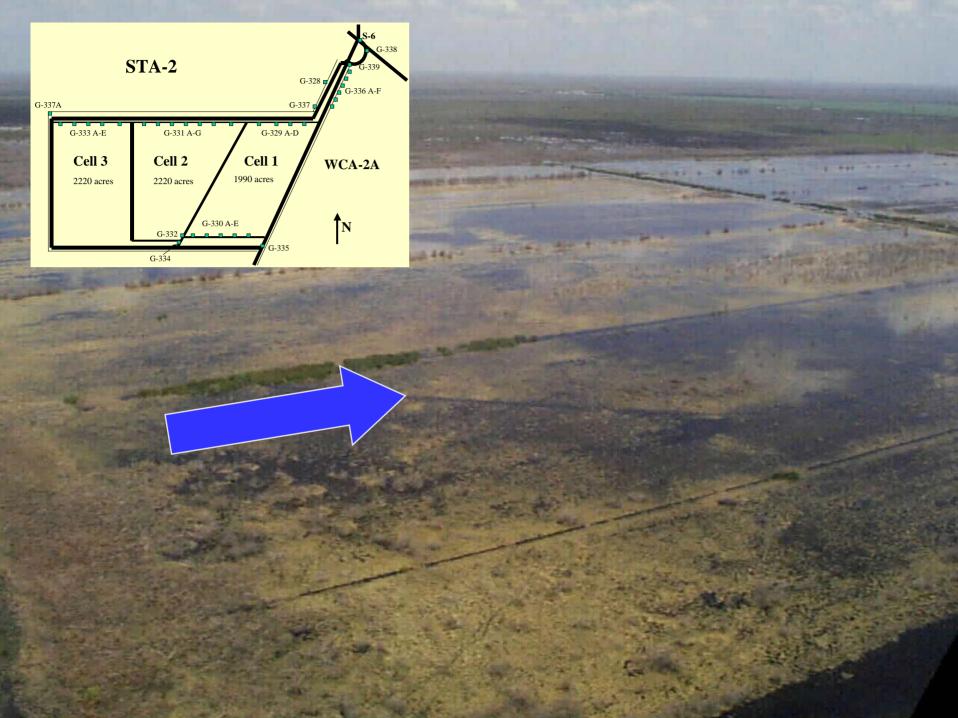
Everglades Construction Project

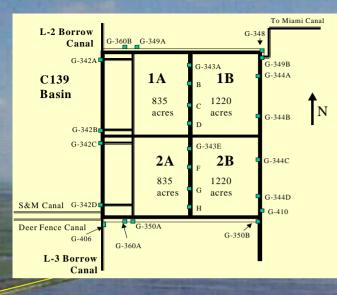
- Six large constructed wetlands
 - 870 acres to over 16,600 acres
 - 10-yr \$700 million construction
 - "Passive" biological treatment yet over 250 control structures, 150 miles of canals/levees
 - combination of emergent, SAV and existing wetland vegetation
 - four are complete; 2 under construction
- Critical for Everglades restoration
 - reduce phosphorus to 50 ppb and lower
 - increase quantity of inflows
 - improve distribution of inflows

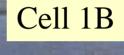
40,000 of prior agriculture lands

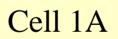


5,000 acres of remnant Everglades habitat




Everglades Nutrient Removal Project - 3,800-ac demonstration project




Cell 1 - self organizing vegetation communities

STA-5 - start-up

STA Sizing

STA	Flow	Load	Size
	AF/yr	MT/yr	ha
STA 1E	124,876	29.4	2,170
STA 1W	142,860	37.7	2,700
STA 2	174,641	33.7	2,600
STA-3/4	604,655	87.3	6,745
STA 5	78,340	25.3	1,670
STA 6	53,877	13.2	960

STA Summary

- 6 large constructed wetlands totaling over 19,300 ha to treat 331,174 ha of tributaries (6%)
- ~1,180,000 AF/yr & ~227 MT/yr
- ♦ Goal is 50 ppb outflow; ~164 MT/yr removal
- Peat soils that vary in organic content
- Surface flow wetland treatment systems
- Long-term P removal through peat accretion
- Utilizing a combination of existing wetland plants, volunteer recruitment, and management to encourage submerged aquatic vegetation/algal communities
- Performance to date has exceeded expectations!

Lessons Learned

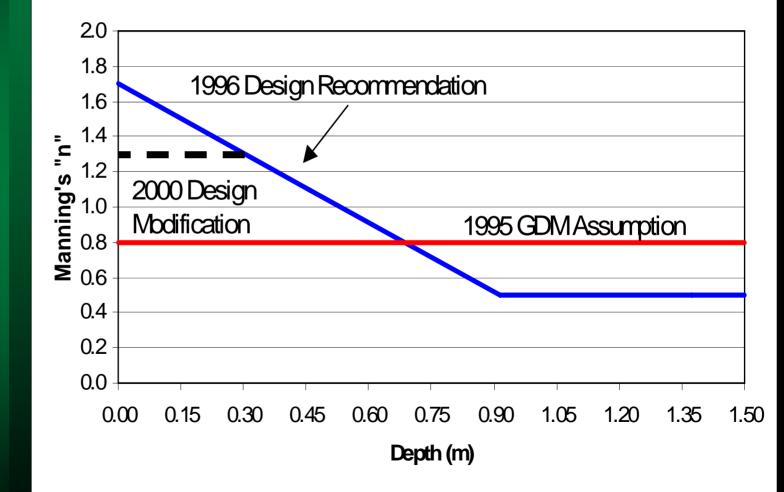
• Still writing the book

 Have spent hundreds of hours compiling lessons learned

 Will highlight significant lessons learned to date

Planning

- Establish effective teams
 - internal: scientists and engineers
 - external: agencies, stakeholders and technical experts
- Establish clear project targets
- Characterize hydrologic and nutrient inputs
- ♦ Identify and evaluate alternatives
- Retool business practices


Design - Process

- STA Design review group began 1991
- Utilized combination of consultants and inhouse design
- Continual exchange of ideas between team members – scientists and engineers, etc.
- Site manager and operations staff active during design
- ♦ Extensive peer-review
- Creative land management long-term plan

Design - details

- Good topographic surveys are critical
- Know what the desired vegetation type will be - design for min./max. and average operating depths
- Vegetation barriers necessary at all structures
- Consider prior land use
- Understand nutrient dynamics
- Utilize depth-dependent variable Manning's "n" for modeling flows

Design - details (cont'd)

- use of standard designs structures, levees, etc.
 - passive split level gates to maintain operating depths
- consider monitoring equipment, structure calibration, flow monitoring during design
- prepare water management and dewatering plans prior to construction – keep water onsite to accelerate growth of wetland vegetation
- can never have too much geotechnical data minimize contractor claims
- automated trash racks for pump stations

Design - concluded

- Performance related to hydraulic efficiency
 - minimize short circuiting
 - plug field ditches parallel to flow
 - leave transverse canals for redistribution
 - use spreader canals, collection canals
 - compartmentalization hydraulic redistribution
- Seepage can be significant
- Consider new information during design

Permitting

- Meet early and often with regulatory agencies; educate the regulator
- Plan resources for permit administration and acquisition
- Permit conditions should allow for operational flexibility
- Minimize monitoring requirements longterm financial obligation and most data are not reviewed buy regulatory agencies
- Streamline reporting requirements to minimize resource commitments

Construction

- Hold mandatory pre-bid conferences
- Minimize number of different prime contractors
- Formal partnering agreements/kick-off meetings prior to construction for addressing problems
- Site manager active during construction
- Vegetation management plans

Operations

- Communication, communication, communication!
- Keep the team together monitor operations frequently
- Commit the staff and \$ resources required
- Develop operation plan (construction, start-up and normal ops) early and obtain broad review
- Review operation plan frequently every 6-12 months; document deviations immediately for posterity

Operations - cont'd

- Large-scale systems are self-designing contingency plans
- Flush submerged aquatic vegetation periodically to avoid major build up and pump shut down
- Stay ahead of (i.e., herbicide) undesirable
 vegetation early and appropriate periodicity
- Annual aerial photos are very beneficial

Operations - concluded

- Continue monitoring/researching ways to improve/optimize performance
- Performance frequent review and analysis to catch and correct problems as soon as possible; run models frequently with actual data
- Communication, communication, communication!

For More Information:

- www.sfwmd.gov
 - Major Projects
 - Everglades Restoration
 - Everglades Construction Project
- Everglades Consolidated Report
 - Summary of all available data
 - http://www.sfwmd.gov/org/ema/everglades/index.html
- ♦ Gary Goforth (561) 682-6280
 ggoforth@sfwmd.gov