Working Draft – July 12, 2004

Gary Goforth, P.E., Ph.D. and Tracey Piccone, P.E. South Florida Water Management District

1.0 Executive Summary

The projects in the October 27, 2003 *Everglades Protection Area Tributary Basins Long-Term Plan for Achieving Water Quality Goals* (Long-Term Plan) were designed to achieve compliance with the water quality standards for the Everglades Protection Area (EPA) by December 31, 2006, based on specific assumptions and the best available information. The pre-2006 STA enhancements recommended in the Long-Term Plan are required by the 2003 amended Everglades Forever Act (EFA) to be implemented by the District without delay. These projects are currently in the design phase and are scheduled to begin construction in the near future. The Long-Term Plan was submitted to the Florida Department of Environmental Protection in accordance with the EFA requirement for a long-term permit application.

One of the key assumptions during the development of the Long-Term Plan was that Compartments B and C (see **Figure 1**) would be under consideration for use as part of the EAA Storage Reservoir (EAASR) project through FY 2010 and for this reason should not be considered for other Everglades restoration uses until FY 2011. Subsequent to completion of the Long-Term Plan, it was determined that all of the EAA Storage Reservoir Project's water storage goals could be achieved on Compartment A, and that Compartments B and C would not be needed to meet the storage objectives of the EAASR.

As part of the *adaptive implementation process* envisioned by the Long-Term Plan, it was anticipated that further refinements to the recommended water quality improvement measures would be made as more scientific and engineering information was obtained. In light of the recent availability of land in Compartments B and C, construction of additional treatment areas is proposed in association with STA-2, STA-5 and STA-6 to assist the STAs in improving water quality entering the EPA. These expanded treatment areas are proposed to be developed as soon as possible, with a target completion date of December 31, 2006, however, that date may be optimistic in light of issues such as permitting, real estate, cultural resources, and the major construction activities being proposed. It is also recommended to construct treatment areas on the remaining acreage of Compartments B and C to further assist the STAs in improving water quality entering the EPA. A regional feasibility study is also proposed to determine the best use of the remaining portions of Compartments B and C with the objective of assisting the STAs in improving water quality in the EPA. The feasibility study will evaluate alternatives for interbasin transfer of waters to optimize STA performance, and will include cost estimates, schedules and performance projections. It is further recommended to construct the structural and vegetation enhancements identified in the Long-Term Plan for STA-2 and STA-6 Section 1 after flow-through operation of the additional treatment cells begins, and if demonstrated to be necessary to achieve the water quality goals in the EPA.

Figure 1. Map of EAA with Compartments A, B and C

2.0 Compartment B

Recommendation #1: Expand STA-2 with a Fourth Parallel Cell on a 2,015-acre Portion of Compartment B; Construct the STA-2 Enhancements After the Expanded Treatment Area is in Flow-through Operation

The Long-Term Plan included recommendations for structural, vegetative and operational enhancements for STA-2 to improve hydraulic distribution and phosphorus removal performance. These enhancements included a new levee and associated water control structures within each treatment cell. Conversion of emergent vegetation to SAV was also recommended in the downstream portions of Cells 1 and 2. The availability of approximately 9,590 acres of land adjacent to STA-2 provides an opportunity to re-evaluate the water quality treatment measures in and around the STA. A schematic of STA-2 and the surrounding Compartment B (labeled "Woerner", "Carroll", and "Okeelanta") is shown in Figure 2.

The following assumptions were used to develop a preliminary conceptual plan for adding additional treatment area to STA-2:

- 1. The entire 1,233 acres of the former Carroll property is available for immediate use.
- 2. Approximately 782 acres of the Okeelanta lease, located immediately west of the southwest corner of STA-2, along with a 500-ft strip of land adjacent to the southern boundary of STA-2, could be available for use within 6 months of notification by the District.
- 3. The Woerner South Farm 2 property (approximately 4,275 acres) will not be available in time for incorporation into an expanded treatment area by December 2006. However, a 200-ft strip of land adjacent to the northwestern reach of the seepage collection canal may be needed in association with extending the inflow canal south to the new Cell 4.
- 4. No additional inflows (beyond those included in the Long-Term Plan analyses) will be sent to the expanded treatment area during the near-term (i.e., prior to December 31, 2008).
- 5. The existing STA-2 inflow and discharge infrastructure can be utilized at its present capacity.
- 6. Design can proceed utilizing an existing engineering contract.
- 7. Construction can proceed without delay upon completion of the detail design.
- 8. The Florida DEP and the U.S. Army Corps of Engineers will be part of the development team to ensure expedited review, approval and issuance of all necessary permits or permit modifications so as not to delay construction or operation.

Working Draft – July 12, 2004

- 9. There will be no delays due to remediation of hazardous material resulting from prior land use.
- 10. Funding is not a constraint.
- 11. The recommendations will require revisions to the Long-Term Plan; it is assumed that the FDEP review and approval process will be completed expeditiously so as not to delay construction or operation.

Preliminary Conceptual Plan: A contiguous parcel of approximately 2,015 acres located between STA-2 and the North New River Canal is proposed for construction of a new Cell 4 for STA-2. Assuming 10% of the area would be required for levees, canals and water control structures, approximately 1,813 acres could be developed as effective treatment area. The existing STA-2 inflow canal could be extended south and west along the top of the new treatment cell, and five (5) inflow structures could introduce the water to the north end of Cell 4. Cell 4 could be developed as an SAV cell identical to Cell 3, and a new discharge canal could convey treated water south of the existing Cell 3 by expanding the existing seepage collection canal. A new Cell 4 outlet control structure (similar to G-334) could be constructed at the confluence of this new discharge canal and the existing canal immediately east and downstream of G-334. Seepage control could be provided by collection canals along the northern boundary of Cell 4 with direct connections to the North New River Canal, although this needs to be evaluated in light of the scheduled cessation of farming on adjacent lands. Approximately 2.5 miles of perimeter levees, six gated water control structures and one spillway would comprise the major construction features. A schematic of the expanded STA-2 is provided in Figure 3. Construction of this new Cell 4 is will be completed as soon as possible, subject to timely availability of land, permitting, and other factors outside the control of the District.

The projected nutrient removal performance of this expanded STA-2 was simulated using the April 2002 version of the DMSTA model developed by Walker and Kadlec, and resulted in outflow concentrations ranging from 10-12 ppb reported as a geometric mean, and 13-15 ppb reported as a flow-weighted mean (see Appendix 1 for the DMSTA modeling description). This compares favorably with the estimated range of performance shown in the Long-Term Plan of 10-14 ppb (geometric mean) and 17-28 ppb (flow-weighted mean). For these DMSTA simulations, the lower end of the performance projections used the calibration data set for STA-2 Cell 1 (from Bill Walker's website) for Cells 1 and 2, and SAV_C4 was used for Cells 3 and 4; the higher end of the performance projections used the calibration data set for STA-2 cells for the existing cells, and the STA-2 Cell 3 calibration data set was used for Cell 4. For both projections the inflow data set corresponding to the period 2007-2015 was adjusted to increase the flows and reduce TP inflow concentrations to reflect observed values over the last three water years. In addition to the predicted improvement in phosphorus removal performance, a fourth treatment cell will add operational redundancy and increased flexibility to the STA.

STA-2 is currently performing much better than was anticipated during the original design. Flow-weighted mean outflow concentrations have been averaging 16 ppb for the last three water years, which is actually better than the projected long-term average flow-weighted mean concentration with the enhancements recommended in the Long-Term Plan. There is concern that disrupting the operation of the STA to construct the recommended enhancements (the new internal levees, structures and vegetation conversion) prior to expansion may cause short-term

Working Draft - July 12, 2004

bypass of phosphorus to the Everglades and may jeopardize the exceptional long-term performance of this STA. The recommendation is to begin construction of one of the new interior levees in STA-2 after the flow-through operation of Cell 4 commences. After the construction of this initial levee (target completion date of 2008), the resulting performance will be evaluated for a two-year period prior to construction of the remaining levees and vegetation conversion, if determined to be necessary to achieve the water quality goals in the EPA.

Figure 3. Schematic of Expanded STA-2 (not to scale).

2.1 Full Build-out of Compartment B as Treatment Area

It is also recommended to construct additional treatment areas on the remaining acreage of Compartment B. One possible configuration is presented in Figure 4. The details of this additional treatment acreage, including necessary operational modifications to accommodate interbasin transfers, are to be evaluated in a regional feasibility study. Construction is proposed to begin on these additional treatment areas in 2007, with completion as soon as possible thereafter.

Strategy for Using Compartments B & C for Water Quality Improvement Working Draft – July 12, 2004

Working Draft – July 12, 2004

3.0 Compartment C

Recommendation #2. Construct the STA-5 Enhancements; Expand STA-5 with a Third Parallel Flow-way on a 2,560-acre Portion of Compartment C; Construct STA-6 Section 2 with Enhancements; Construct the STA-6 Section 1 Enhancements After the STA-6 Section 2 is in Flow-through Operation

The Long-Term Plan included recommendations for structural, vegetative and operational enhancements for STA-5 and STA-6 to improve hydraulic distribution and phosphorus removal performance. These enhancements included replacement of the interior structures in STA-5 and a new levee and associated water control structures within Cell 5 of STA-6 Section 1. Conversion of emergent vegetation to SAV was also recommended in Cell 2B of STA-5 and in the downstream portion of Cell 5 of STA-6 Section 1. Construction of STA-6 Section 2 was included in the Long-Term Plan with recommended enhancements including an internal levee and SAV in the downstream cell. A schematic of the existing STAs, STA-6 Section 2 and the 8,800-acre Compartment C (labeled "USSC Unit 2") is shown in Figure 5.

STA-5 has been experiencing higher than anticipated nutrient loading and as a result, outflows have not been as low as was anticipated during the original design. By contrast, STA-6 Section 1 is currently performing much better than was anticipated during the original design. Flow-weighted mean outflow concentrations have been averaging 19 ppb since December 1997, which is actually within the range of the projected performance with the enhancements recommended in the Long-Term Plan. For Water Year 2004, the outflow averaged 13 ppb, which is lower than the range of projected performance with the enhancements. The availability of the land between STA-5 and STA-6 provides an opportunity to re-evaluate the water quality treatment measures in and around those STAs.

The following assumptions were used to develop a preliminary conceptual plan for utilizing Compartment C:

- 1. The majority of the 8,800 acres of the former USSC Unit 2 property is available for immediate use; the balance, approximately 3,000 acres, will be available by April 2005.
- 2. Existing STA-6 Section 1 and planned Section 2 would receive runoff from C-139 Annex and approximately 6 inches of runoff per year from the fallow portion of Compartment C.
- 3. Additional inflows (beyond those included in the Long-Term Plan analyses) will be sent to the expanded treatment area. The increase is a result of updated information on the flow volumes and phosphorus concentrations from the C-139 Annex and the southern C-139 Basin.
- 4. Design can proceed utilizing an existing engineering contract.
- 5. Construction can proceed without delay.
- 6. The Florida DEP and U.S. Army Corps of Engineers will be part of the development team to ensure expedited review, approval and issuance of all necessary permits or permit modifications so as not to delay construction or operation.
- 7. There will be no delays due to remediation of hazardous material resulting from prior land use (responsibility of USSC).
- 8. Funding is not a constraint.

Working Draft – July 12, 2004

9. The recommendations will require revisions to the Long-Term Plan; it is assumed that the FDEP review and approval process will be completed expeditiously so as not to delay construction or operation.

Figure 5. Schematic of STA-5, STA-6, and Compartment C, also known as USSC Unit 2 (not to scale)

3.1 Preliminary Conceptual Plan

3.1.1. STA-5. It is recommended to construct a new 2,560 acres flow-way for STA-5 immediately south of STA-5 to capture and treat all of the southern C-139 Basin runoff. Assuming the same topographic limitations as in the existing STA, approximately 2,055 acres could be developed as effective treatment area. One spillway of the existing G-406 diversion structure could be utilized as the inflow structure for the new flow-way, with a new inflow distribution canal excavated. Interior water control structures could be installed in a new levee that would separate the 835-acre upstream cell (Cell 3A) from the 1,220-acre downstream Cell 3B. Cell 3A could be developed as an emergent marsh and Cell 3B could be developed as an SAV cell identical to Cell 1B and 2B, and new Cell 3B outlet control structures (similar to G-344A-D) could be constructed. A new discharge canal could convey treated water either north to

Working Draft – July 12, 2004

the existing STA-5 discharge canal or south along the western boundary of the Rotenberger Wildlife Management Area to the existing STA-6 discharge canal. Additional discharge capability in the STA-6 discharge canal, as well as a possible new pump station to move water into WCA-3A may be required. The STA-5 enhancements are proposed to proceed as recommended in the LTP, with the exception of one small seepage return pump station which will not be necessary due to the cessation of farming operations in Compartment C.

The projected nutrient removal performance of this expanded STA-5 was simulated using the April 2002 version of the DMSTA model developed by Walker and Kadlec. A different input data set was used to simulate the performance of STA-5 than was used in the Long-Term Plan based on higher than anticipated flows and phosphorus loads for the C-139 Basin, as summarized in Table 1. The future flows and loads from the C-139 Basin may actually be less than estimated in Table 1, as approximately 42,000 acres of the watershed are removed from agricultural production and as the basin's best management practices become more effective.

	Annual Flow (acre-ft per year)	Annual TP Load (kg/year)	TP Concentration (ppb)
Long-Term Plan (1/1/65 – 12/31/95)	135,178	29,888	179
This Analysis (1/1/65 - 12/31/02)	137,260	33,656	199
Difference	2,082	3,768	20

 Table 1. Summary of Estimated Flows and Loads from the Southern C-139 Basin

The resulting outflow concentrations ranged from 10-12 ppb reported as a geometric mean, and 15-22 ppb reported as a flow-weighted mean, using SAV_C4 and NEWS_2, respectively. NEWS_2 was an August 2002 update to the NEWS calibration data set used in the development of the Long-term Plan. This range compares favorably to the estimated range of performance shown in the Long-Term Plan of 10-13 ppb (geometric mean) and 20-30 ppb (flow-weighted mean).

Based on these results, it is recommended to expand STA-5 by adding a third parallel flow-way which will reduce the load on the current STA-5 footprint, add treatment redundancy and increase operational flexibility for the STA. Approximately 4 miles of perimeter levee, 2 miles of inflow canal, 5 miles of a new discharge canal, and six gated water control structures would comprise the major construction features for the expanded STA-5. A schematic of the expanded STA-5 is presented in Figure 6. This expansion will be completed as soon as possible, subject to timely availability of land, permitting, and other factors outside the control of the District.

Working Draft – July 12, 2004

Figure 6. Schematic of Expanded STA-5 (not to scale).

3.1.2. STA-6. The Long-Term Plan assumed that through the year 2014, STA-6 Sections 1 and 2 would capture and treat runoff from the 8,800-acre Compartment C, the C-139 Annex, excess flows from the southern C-139 Basin diverted from STA-5, and supplemental water from Lake Okeechobee. With the cessation of active farming in Compartment C, the runoff flows and loads are assumed to decrease, and an areal runoff similar to that observed in the C-139 Basin (approximately 12 inches per year) was used in this analysis; the actual drainage may be less. With the expanded STA-5, it is assumed that all of the southern C-139 Basin flows would be captured and treated in STA-5, although bypass to the L-3 borrow canal would be provided by one spillway at G-406. Recent data collected just downstream of the C-139 Annex suggest significantly higher flows and loads may discharge from that basin into STA-6 than anticipated during the development of the Long-Term Plan. A revised inflow set for STA-6 was developed and is summarized in Table 2 (further details on this data set are provided in Appendix 1). The increased estimate of flows from the C-139 Annex more than offsets the reduction in flows from

Working Draft – July 12, 2004

Compartment C, resulting in greater estimated inflows to STA-6 than were anticipated in the Long-Term Plan.

	Annual Flow (acre-ft per year)	Annual TP Load	TP (ppb)
		(kg/year)	
Southern C-139 Basin			
Long-Term Plan	3,065	849	224
This Analysis	0	0	-
Difference	-3,065	-849	-
Compartment C			
Long-Term Plan	21,794	2,095 (excludes 760 kg/yr	85
	(excludes 5,476 AF/yr bypassed in	bypassed in LTP	
	LTP simulation)	simulation)	
This Analysis	6,278	463	60
Difference	-15,516	-1,632	25
C-139 Annex			
Long-Term Plan	11,954	1,032	70
This Analysis	35,852	4,608	104
Difference	23,898	3,576	34
Total Runoff			
Long-Term Plan	36,813	3,976	76
This Analysis	42,130	5,071	98
Difference	5,317	1,095	22

 Table 2. Summary of Revised STA-6 Inflows

The 870-acre STA-6 Section 1 is currently performing much better than was anticipated during the original design. Flow-weighted mean outflow concentrations have averaged 19 ppb, which is actually within the range of the projected performance with the enhancements recommended in the Long-Term Plan. For Water Year 2004, the outflow averaged 13 ppb, which is lower than the range of projected performance with the enhancements. There is concern that disrupting operation of the STA to construct the recommended enhancements, including the new internal levee, structures and vegetation conversion, prior to operation of STA-6 Section 2, may cause short-term bypass of phosphorus to the Everglades and may jeopardize the exceptional long-term performance of this STA. The current recommendation is to start construction of the STA-6 Section 1 enhancements after a two-year evaluation of STA-6 Section 2 performance, and if demonstrated to be necessary to achieve the water quality goals in the EPA. Assuming a 6-month start-up for STA-6 Section 2, the 2-year evaluation would cover the period June 2007-May 2009, and construction could start as early as October 2009, with completion by June 2010. The STA-6 Section 2 enhancements are proposed to proceed as recommended in the LTP. For this analysis, the projected nutrient removal performance of STA-6 (Sections 1 and 2) was simulated using DMSTA. For these simulations, updated calibrated data sets for STA-6 documented on Bill Walker's website were used for the emergent cells, and SAV C4 and NEWS 2 were used for the SAV cells. The simulated performance for STA-6 resulted in outflow concentrations ranging from 10-11 ppb reported as a geometric mean, and 12-14 ppb reported as a flowweighted mean. This range compares favorably to the estimated range of performance shown in the Long-Term Plan of 10-13 (geometric mean) and 17-24 ppb (flow-weighted mean).

Working Draft – July 12, 2004

3.2 Full Build-out of Compartment C

It is also recommended to construct additional treatment areas in the remaining acreage of Compartment C. In addition to the recommended construction of STA-6 Section 2 and the expansion of STA-5, one alternative would consist of an additional 4-mile long by 1-mile wide low-way and a 4-mile long by 1.5-mile wide flow-way to treat the southern C-139 Basin; and an extension of STA-6 Section 2 west to the L-3 borrow canal (see Figure 7) to assist in the treatment of the C-139 Annex. The DMSTA modeling represented STA-5 as 5 flow-ways, each receiving a proportional share of the hydraulic and phosphorus load of the southern C-139 Basin. STA-6 was modeled with an additional 720 acres of effective treatment area in Cell 1 upstream of STA-6 Section 2 Cell 2. Using the same inflows (except with no runoff from Unit 2) as modeled for STA-5 and STA-6 above, and using the same calibration data sets, the projected phosphorus concentrations for this expanded treatment area is 12-17 ppb, reported as flowweighted means, and 10 ppb reported as a geometric mean for STA-5; and 10-12 ppb reported as a flow-weighted mean and 10 ppb reported as a geometric mean for STA-6 (see Tables 11-14). The details of this additional treatment area, including necessary operational modifications to accommodate interbasin transfers, are to be evaluated in a regional feasibility study. Construction is proposed to begin on this additional treatment area in 2007, with completion as soon as possible thereafter.

Figure 7. One Alternative for Build-out of Compartment C (not to scale).

Page 12 of 34

Working Draft – July 12, 2004

4.0 Recommendation #3. Conduct a Regional Feasibility Study to Determine the Best Use of the Remaining Portions of Compartments B and C as Additional Treatment Areas.

As stated in previous sections of this paper, it is recommended to construct additional treatment areas on all of the remaining acreage of Compartments B and C. On a parallel path with implementing the expanded treatment areas for STA-2 and STA-5, a regional feasibility study should be initiated to determine the best use of the remaining portions of Compartments B and C with the objective of assisting the STAs in improving water quality in the EPA. The feasibility study should take into account the STA expansions described above, the other planned STA enhancements, the Bolles and Cross Canal Improvements, the EAA Storage Reservoir Project and other currently planned improvements in the EAA region.

The feasibility study should be conducted in increments, with the initial focus being an operational analysis of moving water and associated phosphorus loads from the eastern EAA basins (e.g., the S-5A basin) to the central and western treatment areas (the expanded STA-2 and STA-3/4). This operational analysis would identify potential changes to the District's canal system that would be needed to meet the water quality improvement goals, and would be closely linked to the Bolles and Cross Canal Improvements project. Specific areas to be evaluated in this initial phase include:

- Providing operational flexibility to redirect STA-1W inflows and/or outflows to the Hillsboro Canal and then to either STA-2 via the S-6 pump station, or to Compartment B and /or STA-3/4 via the North New River Canal
- \bullet Reducing flows and loads (up to an average of 30,000 AF/yr) to STA-1E from the S-5A Basin
- Balancing flows and loads across the STAs by taking into account the planned Bolles and Cross Canal Improvements and the recently completed Ocean Canal conveyance improvements. The analysis should also consider:
 - Whether or not additional conveyance capacity is needed in the 1,900-ft length of the Ocean Canal near S-5A
 - Whether or not additional conveyance capacity is needed in the North New River Canal

Subsequent tasks of the feasibility study should include an evaluation of benefits and opportunities associated with the construction of treatment areas on all of the remaining portions of Compartments B and C such as:

- Adding redundancy to current STA treatment facilities by providing the ability to take treatment cells off line for maintenance, construction of enhancements, or other purposes
- Minimizing potential for overloading the STAs during times of higher than normal runoff or Lake releases
- Improving the phosphorus removal performance of the STAs or otherwise reducing the risk associated with uncertainties in treatment performance projections in the LTP
- Integrating the 1,200-acre Snail Farm property into the regional water quality treatment system, assuming successful conclusion of land acquisition

Working Draft – July 12, 2004

- Providing a hydraulic connection of Compartment C to the Miami Canal (and Lake Okeechobee)
- Providing flow equalization for the STAs
- Adding a pump at G-136 to deliver water supply from the Miami Canal (and Lake Okeechobee) to the C-139 Basin (assuming the pump would provide water with lower phosphorus than groundwater, which is the current source of irrigation water supply)
- Improving the L-7 and L-40 conveyance to minimize potential adverse water quality impact to the interior of Refuge

The overall feasibility study could potentially include alternatives development and evaluation, capital and O&M cost estimates, implementation schedules, maps, environmental and cultural resource concerns and remediation, real estate acquisition schedules and costs, recommendations for interim land management activities, vegetation management activities, flood impact and protection analyses, environmental benefits, water quality performance projections for the STAs, and a funding analysis.

It is anticipated that the feasibility study would occur over a nine (9) month period.

Working Draft – July 12, 2004

Appendix 1. DMSTA Modeling In Support of Expanded Treatment Areas in Compartments B and C

1.0 Compartment B

1.1 STA-2 Inflow Volumes and Phosphorus Levels

It is assumed that no additional inflow sources (beyond those included in the Long-Term Plan analyses) will be sent to the expanded treatment area during the near-term (i.e., prior to December 31, 2008). The actual inflow volume to STA-2 over the last three years has averaged 250,826 acre feet per year, higher than anticipated in the Long-Term Plan (233,668 acre feet per year for the period prior to the EAA Storage Reservoir). The observed flow-weighted mean inflow phosphorus concentration for STA-2 has averaged 73 ppb over the last three years. This is significantly lower than the 100 ppb average anticipated in the Long-Term Plan. The observed inflow phosphorus load has averaged 22,662 kg/yr for the last three years, approximately 21.5% lower than anticipated in the Long-Term Plan. For the purpose of the performance projections of the expanded STA-2, the input data set was revised to reflect the higher inflows and lower phosphorus levels. Additional analyses can be conducted when better estimates of runoff volumes and loads are available. The revised inflow data sets (comprised of a new SFWMM simulation and new water quality information) that are to be completed during FY2005 will provide these better estimates.

1.2 Performance Analyses

The projected nutrient removal performance of this expanded STA-2 was simulated using the April 2002 version of the DMSTA model developed by Walker and Kadlec.

1.2.1 Calibration Data Sets

In a manner consistent with the method used in the Long-Term Plan, a range of expected phosphorus removal performance was simulated by utilizing two calibration data sets, summarized in Table 1. The lower end of the performance projections used the calibration data set for STA-2 Cell 1 (from Bill Walker's website) for Cells 1 and 2, and SAV_C4 was used for Cells 3 and 4; the higher end of the performance projections used the calibration data set for STA-2 cells for the existing cells, and STA-2 Cell 3 was used for Cell 4. The calibration data sets on the Walker website have not been updated for over a year, and as such do not reflect the recent superior performance (annual flow-weighted mean of 14 ppb) of STA-2.

	ary or or in a cun	branch Data Sets		
Performance	Cell 1	Cell 2	Cell 3	Cell 4
Scenario				
Lower End	STA-2 Cell 1	STA-2 Cell 1	SAV_C4	SAV_C4
Higher End	STA-2 Cell 1	STA-2 Cell 2	STA-2 Cell 3	STA-2 Cell 3

Table 1. Summary of STA-2 Calibration Data	Sets
--	------

Working Draft – July 12, 2004

1.2.2 Modeling Results

The DMSTA modeling resulted in outflow concentrations ranging from 10-12 ppb reported as a geometric mean, and 13-15 ppb reported as a flow-weighted mean (see Tables 2-3). This compares favorably with the estimated range of performance shown in the Long-Term Plan of 10-14 (geometric mean) and 17-28 ppb (flow-weighted mean) for the 2007-2015 flow volumes and phosphorus levels.

Working Draft – July 12, 2004

Table 2. DMSTA Summary for Expanded STA-2, Using SAV_C4.

DMSTA Input Values	Run Model	Menu		Warning: O	ne or More C	Cells Outside	of Calib. Rar	ige	
Input Variable	Units	Value	Case Descri	intion:	Filename [.]	2GG EX Dat	ta adi xis		
Design Case Name	-	NEW adj 3	Cells 1 & 2	use STA2_1	calibrated va	lues; Cells 3 a	and 4 use SA	/_C4	
Starting Date for Simulation	-	01/01/65	Adjusted flo	ows and loads	s to observed	3-yr averages	5		
Ending Date for Simulation	-	12/31/95							
Starting Date for Output	-	01/01/65						J	
Steps Per Day	-	3	Output Var	<u>lable</u>		<u>Units</u>	Value		
	- dave	2	Mass Balan			70 %	0.0%		
Reservoir H2O Residence Time	days	0	Flow-Wtd C	Conc - With By	rpass	daa	13.0		
Max Inflow / Mean Inflow	-	0	Flow-Wtd C	onc - Without	Bypass	ppb	13.0		
Max Reservoir Storage	hm3	0	Geometric I	Mean Conc		ppb	10.1		
Reservoir P Decay Rate	1/yr/ppb	0	95th Percer	ntile Conc		ppb	17.0		
Rainfall P Conc	ppb	10	Freq Cell O	utflow > 10 pp	ob	%	34%		
Atmospheric P Load (Dry)	mg/m2-yr	20	Bypass Loa	d		%	0.0%		
Cell Number>		1	2	3	4	5	<u>6</u>	,	
		1	2	3	4				
Vegetation Type Conserv	>	STA2_1 0.220777628	STA2_1 0.27842512	SAV_C4	SAV_C4				
Downstream Cell Number	-	0.220111020	0.27042312	0.27042312	0.22237213				
Surface Area	km2	7.280	9.190	9.190	7.340				
Mean Width of Flow Path	km	1.58	2.00	2.00	1.60				
Number of Tanks in Series	-	3	3	3	3				
Outflow Control Depth	cm	40	40	60	60				
Outflow Coefficient - Exponent	-	2.63	3.1	2.84	2.84				
Outflow Coefficient - Intercept	-	0.52	0.66	0.57	0.57				
Maximum Inflow	hm3/dav	0	0	0	0				
Maximum Outflow	hm3/day	Ő	Ő	Ő	ŏ				
Inflow Seepage Rate	(cm/d) / cm	0.008	0	0	0				
Inflow Seepage Control Elev	cm	76	0	0	0				
Inflow Seepage Conc	ppb	20	20	20	20				
Outflow Seepage Rate	(cm/d) / cm	0.004	0.006	0.01	0.01				
Max Outflow Seepage Control Elev	cm	-01	-61	-30	-30				
Seepage Recycle Fraction	- -	0.78	0.78	0.79	0.79				
Seepage Discharge Fraction	-	0	0	0	0				
Initial Water Column Conc	ppb	30	30	30	30				
Initial P Storage Per Unit Area	mg/m2	500	500	500	500				
Initial Water Column Depth	cm	50	50	50	50				
$C0 = WC Conc at 0 g/m^2 P Stora$	ge ppb	2	2	4	4				
K = Net Settling Rate at Steady Sta	e ppo ate m/vr	22 41	22 41	80 10	22 80 10				
Zx = Depth Scale Factor	cm	60	60	60	60				
C0 - Periphyton	ppb	0	0	0	0				
C1 - Periphyton	ppb	0	0	0	0				
K - Periphyton	1/yr	0.00	0.00	0.00	0.00				
Zx - Periphyton	cm	0	0	0	0				
Sm = Transition Storage Midpoint	mg/m2	0	0	0	0				
SD = Transition Storage Bandwidth	i ing/m2	0	0	0	0			1	
Output Variables	Units	1	2	3	4	5	6	Overall	
Execution Time	seconds/yr	1.68	3.29	4.84	6.39			6.39	
Run Date	-	05/26/04	05/26/04	05/26/04	05/26/04			05/26/04	
Starting Date for Simulation	-	01/01/65	01/01/65	01/01/65	01/01/65			01/01/65	
Starting Date for Output	-	01/01/65	01/01/65	01/01/65	01/01/65			01/01/65	
	- davs	11322	11322	11322	11322			11322	
Cell Label	uayo	1	2	3	4			Total Outflo	
Downstream Cell Label		Outflow	Outflow	Outflow	Outflow			-	
Surface Area	km2	7.280	9.19	9.19	7.34008097			33.0	
Mean Water Load	cm/d	2.6	2.6	2.6	2.6			2.6	
Max Water Load	cm/d	26.0	25.9	25.9	25.9			25.9	
	nm3/yr	5012 7	00.Z	00.Z	50/8 0			22704 9	
Inflow Conc	ppb	73.3	73.3	73.3	73.3			73.3	
Treated Outflow Volume	hm3/yr	69.8	80.1	78.5	62.7			291.2	
Treated Outflow Load	kg/yr	855.5	1014.6	1069.2	854.1			3793.4	
Treated FWM Outflow Conc	ppb	12.3	12.7	13.6	13.6			13.0	
Total Outflow Volume	hm3/yr	69.8	80.1	78.5	62.7			291.2	
Total Outflow Load	kg/yr	855.5	1014.6	1069.2	854.1			3793.4	
Bypass Volume	hm3/yr	0.00	0.00	0.00	0.00			0.00	

Working Draft – July 12, 2004

Table 3. DMSTA Summary for Expanded STA-2, Using STA2_Cell 3.

DMSTA Input Valu	es	Run Model	Menu		Warning: O	ne or More C	Cells Outside	of Calib. Rai
Input Variable		Units	Value	Case Descri	ption:	Filename:	2GG EX Da	ta adi.xls
Design Case Name		-	NEW adj 1	Cells 1 & 2	& 3 use calib	rated values;	Cell 4 use ST	FA2_3
Starting Date for Simula	ition	-	01/01/65	Adjusted flo	ows and loads	s to observed	3-yr average	S
Ending Date for Simulat	ion	-	12/31/95	1			, i i i	
Starting Date for Output	t	-	01/01/65					
Steps Per Day		-	3	Output Var	iable		<u>Units</u>	<u>Value</u>
Number of Iterations		-	2	Water Balar	nce Error		%	0.0%
Output Averaging Interv	al	days	7	Mass Balan	ice Error		%	0.2%
Reservoir H2O Residen	ice Time	days	0	Flow-Wtd C	onc - With By	pass	ppb	15.0
Max Inflow / Mean Inflow	N	-	0	Flow-Wtd C	onc - Without	Bypass	ppb	15.0
Max Reservoir Storage		hm3	0	Geometric I	Mean Conc		ppb	12.0
Reservoir P Decay Rate	e	1/yr/ppb	0	95th Percer	ntile Conc		ppb	17.9
Rainfall P Conc		ppb	10	Freq Cell O	utflow > 10 pp	ob	%	95%
Atmospheric P Load (D	ry)	mg/m2-yr	20	Bypass Loa	ad		%	0.0%
Cell Number>			1	2	<u>3</u>	4	5	6
Cell Label			1	2	3	4		
Vegetation Type	Conserv	▼>	STA2 1	STA2 2	STA2 3	STA2 3		
Inflow Fraction			0.220777628	0.27842512	0.27842512	0.22237213		
Downstream Cell Numb	er	-	0	0	0	0		
Surface Area		km2	7.280	9.190	9.190	7.340		
Mean Width of Flow Par	th	km	1.58	2.00	2.00	1.60		
Number of Tanks in Ser	ries	-	3	3	3	3		
Outflow Control Depth		cm	40	40	60	60		
Outflow Coefficient - Ex	ponent	-	2.63	3.1	2.84	2.84		
Outflow Coefficient - Int	ercept	-	0.52	0.66	0.57	0.57		
Bypass Depth		cm	0	0	0	0		
Maximum Inflow		hm3/day	0	0	0	0		
Maximum Outflow		hm3/day	0	0	0	0		
Inflow Seepage Rate		(cm/d) / cm	0.008	0	0	0		
Inflow Seepage Control	Elev	cm	76	0	0	0		
Inflow Seepage Conc		ppb	20	20	20	20		
Outflow Seepage Rate		(cm/d) / cm	0.004	0.006	0.01	0.01		
Outflow Seepage Contr	ol Elev	cm	-61	-61	-30	-30		
Max Outflow Seepage (Conc	ppb	20	20	20	20		
Seepage Recycle Fract	ion	-	0.78	0.78	0.79	0.79		
Seepage Discharge Fra	iction	-	0	0	0	0		
Initial Water Column Co	nc	ppb	30	30	30	30		
Initial P Storage Per Un	it Area	mg/m2	500	500	500	500		
Initial Water Column De	pth	cm	50	50	50	50		
C0 = WC Conc at 0 g/l	m2 P Storag	је ррв	2	2	2	2		
C1 = WC Conc at 1 g/m	2 P storage	ррр	22	22	22	22		
r = Net Setting Rate at		le m/yr	41	30	20.10	20.10		
Zx = Depin Scale Facto	'I	CIII	00	00	00	00		
C0 - Periphyton		ppp	0	0	0	0		
K - Periphyton		1/ur	0.00	0.00	0.00	0.00		
Zy - Perinhyton		i/yi	0.00	0.00	0.00	0.00		
Sm - Transition Stores	Midnoint	cill ma/m2	0	0	0	0		
Sh = Transition Storage	Bandwidth	mg/m2	0	0	0	0		
So = mansilion Storage	Danuwiu(h	nig/mz	0	0	0	0		
Output Variables		Units	1	2	3	4	5	6
Execution Time		seconds/vr	1.71	3.36	4,97	6.52	7	¥
Run Date		-	05/26/04	05/26/04	05/26/04	05/26/04		
Starting Date for Simula	ition	_	01/01/65	01/01/65	01/01/65	01/01/65		
Starting Date for Output	1	-	01/01/65	01/01/65	01/01/65	01/01/65		
Ending Date		-	12/31/95	12/31/95	12/31/95	12/31/95		
Output Duration		days	11322	11322	11322	11322		
Cell Label		,	1	2	3	4		
Downstream Cell Label			Outflow	Outflow	Outflow	Outflow		
Surface Area		km2	7.280	9.19	9.19	7.34008097		
Mean Water Load		cm/d	2.6	2.6	2.6	2.6		
Max Water Load		cm/d	26.0	25.9	25.9	25.9		
Inflow Volume		hm3/yr	68.4	86.2	86.2	68.9		
Inflow Load		kg/yr	5012.7	6321.6	6321.6	5048.9		
Inflow Conc		ppb	73.3	73.3	73.3	73.3		
Treated Outflow Volume	Э	hm3/yr	69.8	80.1	78.5	62.7		
Treated Outflow Load		kg/yr	855.5	1136.9	1320.1	1054.4		
Treated FWM Outflow 0	Conc	ppb	12.3	14.2	16.8	16.8		
Total Outflow Volume		hm3/yr	69.8	80.1	78.5	62.7		
Total Outflow Load		kg/yr	855.5	1136.9	1320.1	1054.4		
Total FWM Outflow Cor	nc	ppb	12.3	14.2	16.8	16.8		
Bypass Volume		hm3/yr	0.00	0.00	0.00	0.00		

Working Draft – July 12, 2004

2.0 Compartment C

2.1 STA-5

2.1.1 Inflow Volumes and Phosphorus Input

Based on updated C-139 Basin information, additional inflow volumes and phosphorus loads, beyond those included in the Long-Term Plan analyses, were assumed to be sent to the expanded Using a 31-yr (1965-95) period of record, the Long-Term Plan anticipated that STA-5. approximately 135,178 AF/yr and 29,888 kg/yr would be generated as stormwater runoff from the southern C-139 Basin. Recent data (January 1996 - April 2003) indicate higher flows and phosphorus levels, averaging approximately 137,260 AF/yr and 33,656 kg/yr for the 38.3-year period 1965-2003 (see Table 4). While future phosphorus loads can be expected to decrease in accordance with the recently-implemented C-139 Basin Rule, as a conservative assumption, the performance simulations used the observed flows and loads from the basin. Approximately 42,000 acres of the 179,000 acre watershed has recently been scheduled for acquisition, with a transition to less intensive agriculture, and eventually to a panther preserve. While it is anticipated that lower runoff volumes and phosphorus loads should accompany this significant change in land use, the input data sets for this analysis assumed no change in either flows or phosphorus loads (see Table 5). This constitutes a conservative assumption, and additional analyses can be conducted when better estimates of the effect of this change in land use are available. It was assumed that the entirety of the southern C-139 Basin flows and phosphorus loads would be captured and treated by the expanded STA-5, an increase of 2,082 acre-feet per year and 3,768 kg/yr over the input used in developing the Long-Term Plan projections.

Year	Flow (acre-feet)	TP Load (kg)	TP (ppb)
1965 - 1995	135,178	29,888	179
1996	149,548	42,000	228
1997	112,480	23,652	170
1998	162,531	38,158	190
1999	170,141	41,196	196
2000	56,984	15,974	227
2001	172,041	61,458	290
2002	202,307	71,255	286
1965 - 2002	137,260	33,656	199

Table 4. Updated Flows and Loads from the Southern C-139 Basin

Strategy for Using Compartments B & C for Water Quality Improvement Working Draft – July 12, 2004

Annual Flow (acre-ft **Annual TP Load TP** Concentration (kg/year) (ppb) per year) Long-Term Plan (1/1/65 -135,178 29,888 179 12/31/95) This Analysis (1/1/65 -137,260 33,656 199 12/31/02) Difference 2,082 3,768 20

Table 5. Summary of Estimated Flows and Loads from the Southern C-139 Basin

Note: The future flows and loads from the C-139 Basin may actually be less than estimated in this table, as approximately 42,000 acres of the watershed are scheduled to be removed from agricultural production and as the basin's best management practices become more effective.

2.1.2 Performance Analyses

The projected nutrient removal performance of this expanded STA-5 was simulated using the April 2002 version of the DMSTA model developed by Walker and Kadlec.

2.1.3 Calibration Data Sets

The EMERG calibration data set was used for the upstream cells. For the lower estimate of performance, the SAV_C4 data set was used for the downstream SAV cells. For the higher estimate of performance, the NEWS_2 calibration data set was used. The NEWS_2 data set was based on the original NEWS data set, as updated by Dr. Walker in August 2002.

2.1.4 Modeling Results

The resulting outflow concentrations ranged from 10-12 ppb reported as a geometric mean, and 15-22 ppb reported as a flow-weighted mean (see Tables 6-7). This range compares favorably to the estimated range of performance shown in the Long-Term Plan of 10-14 (geometric mean) and 14-21 ppb (flow-weighted mean), despite the increase in flows and loads.

Working Draft – July 12, 2004

Table 6. DMSTA Summary for Expanded STA-5, Using SAV_C4.

DMSTA Input Values	Run Model	Menu		Warning: O	ne or More C	Cells Outside	of Calib. Ran	ige
Input Variable	Units	Value	Case Descri	ption:	Filename:	5 NEW1 Da	ta.xls	
Design Case Name	-	NEW 2	SAV_C4 in	SAV cells				1
Starting Date for Simulation	-	05/01/65						
Ending Date for Simulation	-	04/30/03						
Starting Date for Output	-	05/01/65						l
Steps Per Day	-	3	Water Palar	lable		Units	value	
	- davs	2	Mass Balan			70 %	-0.2%	
Reservoir H2O Residence Time	days	0	Flow-Wtd C	onc - With By	/pass	daa	15.2	
Max Inflow / Mean Inflow	-	0	Flow-Wtd C	onc - Without	t Bypass	ppb	15.2	
Max Reservoir Storage	hm3	0	Geometric I	Mean Conc		ppb	8.4	
Reservoir P Decay Rate	1/yr/ppb	0	95th Percer	ntile Conc		ppb	19.7	
Rainfall P Conc	ppb	10	Freq Cell O	utflow > 10 p	pb	%	39%	
Atmospheric P Load (Dry)	mg/m2-yr	20	Bypass Loa	d		%	0.0%	
Cell Number>		1	2	3	4	5	<u>6</u>	-
Cell Label	-	1A	1B	2A	2B	ЗA	3B	
Vegetation Type Conserv	▼>	EMERG	SAV_C4	EMERG	SAV_C4	EMERG	SAV_C4	
Inflow Fraction	-	0.333	0	0.333	0	0.333	0	
Downstream Cell Number	-	2	0	4	0	6	0	
Surface Area Mean Width of Flow Path	KM2	3.379 1.56	4.937	3.379	4.937	3.379	4.937	
Number of Tanks in Series	-	3	3	3	3	3	3	
Outflow Control Depth	cm	40	60	40	60	40	60	
Outflow Coefficient - Exponent	-	2.8	2.15	2.91	1.78	2.91	1.78	
Outflow Coefficient - Intercept	-	1.57	2.02	1.51	2.1	1.51	2.1	
Bypass Depth	cm	0	0	0	0	0	0	
Maximum Inflow	hm3/day	0	0	0	0	0	0	
Maximum Outflow	hm3/day	0	0	0	0	0	0	
Inflow Seepage Rate	(cm/d) / cm	0	0	0	0	0	0	
Inflow Seepage Control Elev	cm	0	0	0	0	0	0	
Inflow Seepage Conc	ppb	20	20	20	20	20	20	
Outflow Seepage Rate	(cm/d) / cm	0.0015	0.0014	0.0015	0.0015	0.0015	0.0015	
Max Outflow Seepage Control Elev	cini	-40	-30	-40	-30	-40	-30	
Seenage Recycle Fraction	- -	20	20	20	0.5	0.5	20	
Seepage Discharge Fraction	-	0.0	0.0	0.5	0.0	0.0	0.0	
Initial Water Column Conc	daa	30	30	30	30	30	30	
Initial P Storage Per Unit Area	mg/m2	500	500	500	500	500	500	
Initial Water Column Depth	cm	50	50	50	50	50	50	
C0 = WC Conc at 0 g/m2 P Storag	je ppb	4	4	4	4	4	4	1
C1 = WC Conc at 1 g/m2 P storage	ppb	22	22	22	22	22	22	
K = Net Settling Rate at Steady Stat	te m/yr	16	80	15.66	80.10	15.66	80.10	
Zx = Depth Scale Factor	cm	60	60	60	60	60	60	
C0 - Periphyton	ppb	0	0	0	0	0	0	
C1 - Periphyton	ppb 1/yr	0 00	0	0	0	0.00	0	
7x - Perinbyton	i/yi	0.00	0.00	0.00	0.00	0.00	0.00	
Sm = Transition Storage Midpoint	ma/m2	0	0	0	0	0	0	
Sb = Transition Storage Bandwidth	mg/m2	0	0	0	0	0	0	
Output Variables	Units	1	2	3	4	5	<u>6</u>	Over
Execution Time	seconds/yr	2.08	4.05	6.08	8.08	10.08	12.16	12.1
Run Date	-	06/20/04	06/20/04	06/20/04	06/20/04	06/20/04	06/20/04	06/20
Starting Date for Simulation	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01
Starting Date for Output	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01
Output Duration	- dave	13870	13970	13870	13970	13870	13870	130
Cell Label	uays	14	18 18	24	2B	34	3B	Total O
Downstream Cell Label		1B	Outflow	2B	Outflow	3B	Outflow	
Surface Area	km2	3.379	4.937	3.379	4.937	3.379	4.937	24.
Mean Water Load	cm/d	4.6	3.1	4.6	3.1	4.6	3.1	1.9
Max Water Load	cm/d	43.2	30.0	43.2	30.0	43.2	30.0	17.
Inflow Volume	hm3/yr	56.4	55.1	56.4	55.1	56.4	55.1	169
Inflow Load	kg/yr	11218.7	6176.7	11218.7	6104.1	11218.7	6104.1	3365
Inflow Conc	ppb	198.8	112.0	198.8	110.7	198.8	110.7	198
Treated Outflow Volume	hm3/yr	55.1	53.3	55.1	53.2	55.1	53.2	159
I reated Outflow Load	kg/yr	6176.7	812.3	6104.1	808.3	6104.1	808.3	2428
Treated FWM Outflow Conc	ppb	112.0	15.2	110.7	15.2	110.7	15.2	15.
Total Outflow Load	nm3/yr	55.1	53.3	55.1	53.2	55.1	53.2	159
Total EWM Outflow Conc	kg/yr	112.0	012.3	110.7	15.0	110.7	008.3	2428
Bypass Volume	hm3/vr	0.00	0.00	0.00	0.00	0.00	0.00	15.

Working Draft – July 12, 2004

Table 7. DMSTA Summary for Expanded STA-5, Using NEWS_2.

	•	-			-			
DMSTA Input Values	Run Model	Menu	Menu Warning: One or More Cells Outside of Calib. Rar					ge
Input Variable	Units	Value	Case Descri	ption:	Filename:	5 NEW1 Da	ta.xls	
Design Case Name	-	NEW 2	NEWS_2 for	or SAV cells				
Starting Date for Simulation	-	05/01/65						
Ending Date for Simulation	-	04/30/03						
Starting Date for Output	-	05/01/65						
Steps Per Day	-	3	Output Var	<u>iable</u>		Units	Value	
Number of Iterations	-	2	Water Balan	nce Error		%	0.0%	
Pasaryoir H2O Pasidance Time	days	/	Flow-Wtd C	ce Elloi	0266	70 DDD	-0.1%	
Max Inflow / Mean Inflow	uays	0	Flow-Wtd C	onc - Withou	rpass t Bynaes	ppb	21.0	
Max Reservoir Storage	hm3	0	Geometric	11 7				
Reservoir P Decay Rate	1/vr/ppb	õ	95th Percer	tile Conc		dad	28.4	
Rainfall P Conc	ppb	10	Freq Cell Outflow > 10 ppb % 56%					
Atmospheric P Load (Dry)	mg/m2-yr	20	Bypass Loa	ıd		%	0.0%	
Cell Number>		1	2	3	4	5	6	
Cell Label	- [1Å	1B	2Ă	2B	3Å	3B	
Vegetation Type Conserv	▼>	EMERG	NEWS 2	EMERG	NEWS 2	EMERG	NEWS 2	
Inflow Fraction	-	0.333	0	0.333	0	0.333	0	
Downstream Cell Number	-	2	0	4	0	6	0	
Surface Area	km2	3.379	4.937	3.379	4.937	3.379	4.937	
Mean Width of Flow Path	km	1.56	1.56	1.56	1.56	1.56	1.56	
Number of Tanks in Series	-	3	3	3	3	3	3	
Outflow Control Depth	cm	40	60	40	60	40	60	
Outriow Coefficient - Exponent	-	2.8	2.15	2.91	1.78	2.91	1.78	
Outriow Coefficient - Intercept	-	1.57	2.02	1.51	2.1	1.51	2.1	
Maximum Inflow	bm3/day	0	0	0	0			
Maximum Outflow	hm3/day	0	0	0	0		0	
Inflow Seepage Rate	(cm/d) / cm	Ő	ŏ	Ő	Ő	ő	ő	
nflow Seepage Control Elev	cm	õ	ŏ	ŏ	ŏ	ŏ	0 0	
nflow Seepage Conc	ppb	20	20	20	20	20	20	
Outflow Seepage Rate	(cm/d) / cm	0.0015	0.0014	0.0015	0.0015	0.0015	0.0015	
Outflow Seepage Control Elev	cm	-46	-38	-46	-38	-46	-38	
Max Outflow Seepage Conc	ppb	20	20	20	20	20	20	
Seepage Recycle Fraction	-	0.5	0.5	0.5	0.5	0.5	0.5	
Seepage Discharge Fraction	-	0	0	0	0	0	0	
Initial Water Column Conc	ppb	30	30	30	30	30	30	
Initial P Storage Per Unit Area	mg/m2	500	500	500	500	500	500	
Initial Water Column Depth	cm pph	50	50	50	50	50	50	
C1 = WC Conc at 1 a/m2 P storage	ppb ppb	22	22	22	22	22	22	
K = Net Settling Rate at Steady Star	te m/vr	16	90	15.66	90.40	15.66	90.40	
Zx = Depth Scale Factor	cm	60	60	60	60	60	60	
C0 - Periphyton	ppb	0	4	0	4	0	4	
C1 - Periphyton	ppb	0	22	0	22	0	22	
K - Periphyton	1/yr	0.00	31.30	0.00	31.30	0.00	31.30	
Zx - Periphyton	cm	0	0	0	0	0	0	
Sm = Transition Storage Midpoint	mg/m2	0	400	0	400	0	400	
Sb = Transition Storage Bandwidth	mg/m2	0	80	0	80	0	80	
Output Variables	Units	1	2	3	4	5	6	0
Execution Time	seconds/yr	2.13	4.26	6.24	8.34	10.37	12.40	1
Run Date	-	06/20/04	06/20/04	06/20/04	06/20/04	06/20/04	06/20/04	06/
Starting Date for Simulation	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/
Starting Date for Output	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/
Ending Date	-	04/30/03	04/30/03	04/30/03	04/30/03	04/30/03	04/30/03	04/
Dutput Duration	days	13879	13879	13879	13879	13879	13879	13
		1A	1B	2A	2B	3A	3B	Total
Downstream Cell Label	ker 0	1B	Outflow	2B	Outflow	38	Outflow	~
Mean Water Load	KIIIZ	3.379	4.937	3.379	4.937	3.379	4.937	2
Max Water Load	cm/d	4.0 43.2	3.1	4.0	3.1	4.0	30.0	4
nflow Volume	hm3/vr	-+3.2 56 4	55.1	43.2 56.4	55.1	-+3.2 56 A	55.1	1
nflow Load	ka/vr	11218 7	6176.7	11218 7	6104 1	11218 7	6104 1	33
nflow Conc	daa	198.8	112.0	198.8	110.7	198.8	110.7	1
Treated Outflow Volume	hm3/vr	55.1	53.3	55.1	53.2	55.1	53.2	1
Treated Outflow Load	kg/yr	6176.7	1161.9	6104.1	1157.1	6104.1	1157.1	34
Treated FWM Outflow Conc	ppb	112.0	21.8	110.7	21.7	110.7	21.7	2
Total Outflow Volume	hm3/yr	55.1	53.3	55.1	53.2	55.1	53.2	1
Total Outflow Load	kg/yr	6176.7	1161.9	6104.1	1157.1	6104.1	1157.1	34
Total FWM Outflow Conc	ppb	112.0	21.8	110.7	21.7	110.7	21.7	2
Bypass Volume	hm3/vr	0.00	0.00	0.00	0.00	0.00	0.00	0

Working Draft – July 12, 2004

2.2 STA-6

The Strategy Paper does not recommend any changes to the acreage of treatment area recommended in the Long-Term Plan for STA-6 Sections 1 and 2 prior to December 31, 2006. However, significant changes to the inflow volumes and phosphorus levels are anticipated, as described in the following section.

2.2.1 Inflow Volumes and Phosphorus Input

The Long-Term Plan assumed that through 2014, STA-6 Sections 1 and 2 would capture and treat runoff from the 8,800-acre Compartment C, the C-139 Annex, excess flows from the southern C-139 Basin diverted from STA-5, and supplemental water from Lake Okeechobee. With the cessation of active farming in Compartment C, the runoff flows and loads are assumed to decrease, and an areal runoff similar to that observed in the C-139 Basin (approximately 12 inches per year) was assumed in this analysis; the actual drainage may be less. With the expanded STA-5, it is assumed that all of the southern C-139 Basin flows would be captured and treated in STA-5, although bypass would be provided by one spillway at G-406. Flow and phosphorus loads from the C-139 Annex (also know as Unit 1) were estimated from records at the USSO station, located just downstream of the Unit 1 discharge. These are presented in Figure 1 and are significantly higher than estimated in the 1996 General Design Memorandum, the 1997 STA-6 Detailed Design Report (12,640 AF/yr; 1,090 kg/yr; 70 ppb), and in the development of the Long-Term Plan. A revised inflow set for STA-6, covering the period 1/1/65 $- \frac{12}{31}{2002}$ was developed and is summarized in Table 8. The increased estimate of flows from the C-139 Annex more than offsets the reduction in flows from Compartment C, resulting in greater estimated inflows to STA-6 than anticipated in the Long-Term Plan.

The 870-acre STA-6 Section 1 is currently performing much better than was anticipated during the original design. Flow-weighted mean outflow concentrations have averaged 19 ppb, which is actually within the range of the projected performance with the enhancements recommended in the Long-Term Plan. For Water Year 2004, the outflow averaged 13 ppb, which is lower than the range of projected performance with the enhancements. There is concern that disrupting operation of the STA to construct the recommended enhancements, including the new internal levee, structures and vegetation conversion, prior to operation of STA-6 Section 2, may cause short-term bypass of phosphorus to the Everglades and may jeopardize the exceptional long-term performance of this STA. The current recommendation is to start construction of the STA-6 Section 1 enhancements after a two-year evaluation of STA-6 Section 2 performance, and if demonstrated to be necessary to achieve the water quality goals in the EPA. The STA-6 Section 2 enhancements are proposed to proceed as recommended in the Long-Term Plan.

Working Draft – July 12, 2004

Figure 1. Summary of Flows and Phosphorus from Station USSO.

Strategy for Using Compartments B & C for Water Quality Improvement Working Draft – July 12, 2004

Annual Flow	Annual TP Load	TP (ppb)
(acre-ft per year)	(kg/year)	
3,065	849	224
0	0	-
-3,065	-849	-
21,794	2,095 (excludes 760	85
(excludes 5,476	kg/yr bypassed in	
AF/yr bypassed in	LTP simulation)	
LTP simulation)		
6,278	463	60
-15,516	-1,632	25
11,954	1,032	70
35,852	4,608	104
23,898	3,576	34
36,813	3,976	76
42,130	5,071	98
5,317	1,095	22
	Annual Flow (acre-ft per year) 3,065 0 -3,065 21,794 (excludes 5,476 AF/yr bypassed in LTP simulation) 6,278 -15,516 11,954 35,852 23,898 36,813 42,130 5,317	Annual Flow (acre-ft per year) Annual TP Load (kg/year) 3,065 849 0 0 -3,065 -849 21,794 2,095 (excludes 760 kg/yr bypassed in LTP simulation) 6,278 463 -15,516 -1,632 11,954 1,032 35,852 4,608 23,898 3,576 36,813 3,976 42,130 5,071 5,317 1,095

Table 8. Summary of Revised STA-6 Inflows

2.2.2 Performance Analyses

The projected nutrient removal performance of STA-6 (Sections 1 and 2) was simulated using DMSTA.

2.2.3 Calibration Data Sets

For these simulations, updated calibrated data sets for STA-6 documented on Bill Walker's website were used for the emergent cells, and SAV_C4 and NEWS_2 were used for the new SAV cell, Cell 4.

2.2.4 Modeling Results

The simulated performance for STA-6 resulted in outflow concentrations ranging from 10-11 ppb reported as a geometric mean, and 12-14 ppb reported as a flow-weighted mean (see Tables 9-10). This range compares favorably to the estimated range of performance shown in the Long-Term Plan of 10-13 (geometric mean) and 17-24 ppb (flow-weighted mean).

Working Draft – July 12, 2004

2.3 Full Build-out of Compartment C as Treatment Area

It is also recommended to construct additional treatment areas in the remaining acreage of Compartment C. In addition to the recommended construction of STA-6 Section 2 and the expansion of STA-5, one alternative would consist of an additional 4-mile long by 1-mile wide low-way and a 4-mile long by 1.5-mile wide flow-way to treat the southern C-139 Basin; and an extension of STA-6 Section 2 west to the L-3 borrow canal (see Figure 2) to assist in the treatment of the C-139 Annex. The DMSTA modeling represented STA-5 as 5 flow-ways, each receiving a proportional share of the hydraulic and phosphorus load of the southern C-139 Basin. STA-6 was modeled as the same as in Section 3.2 with an additional 720 acres of effective treatment area in Cell 1 upstream of Cell2. Using the same inflows (except with no runoff from Unit 2) as modeled for STA-5 and STA-6 above, and using the same calibration data sets, the projected phosphorus concentrations for this expanded treatment area is 12-17 ppb, reported as flow-weighted means, and 10 ppb reported as a geometric mean for STA-5; and 10-12 ppb reported as a flow-weighted mean and 10 ppb reported as a geometric mean for STA-6 (see Tables 11-14).

Working Draft – July 12, 2004

Table 9. DMSTA Summary for Expanded STA-6, Using SAV_C4

DMSTA Input Va	lues	Run Model	Menu						
Input Variable		Units		Case Descri	ption:	Filename:	6 NEW 1_D	ata.xls	C4
Design Case Name	lation	-	NEW5	Used calibr	ation data se	is from Walke	r; new - STA	o_5 and SAV	_04
Starting Date for Simu	Jiation	-	05/01/65	2656 ac ad	dition to STA	•D			
Storting Date for Simu	ation	-	04/30/03	C139 Anne	x and balanc	e or Unit 2 infl	ows		
Starting Date for Outp	Jui	-	CO/1/U/CU c	Output Ver	iablo		Unite	Value	J
Number of Iterations		-	3 2	Water Balar	able See Error		<u>onns</u> %	0.0%	
	nval	- dave	2	Mass Balan			70 0/	-0.2%	
Reservoir H20 Resid	ence Time	days	0	Flow-Wtd C	onc - With By	nass	⁷⁰	-0.2 %	
Max Inflow / Mean Inf	low	uays	0	Flow-Wtd C	onc - Without	Bynass	ppb	11.0	
Max Reservoir Storad	10 10	hm3	0	Geometric M	Jean Conc	Буразз	ppb	9.8	
Reservoir P Decay R	ate	1/vr/nnh	0	95th Percen	tile Conc		ppb	15.2	
Rainfall P Conc	ato	nnh	10	Freq Cell O	utflow > 10 pr	h	%	18%	
Atmospheric P I oad ((Drv)	ma/m2-vr	20	Bypass Loa	d		%	0.0%	
0.11.N1	(= -) /			1 -)	-		-		
Cell Number>			1	2	3	4	5	<u>0</u>	7
	0		3	CTAC F		4			
vegetation Type	Conserv	>	STA0_3	STA6_5	STA6_5	SAV_C4			
Downotroom Coll Num	nhor	-	0.106074679	0.21123132	0.614094	0			
Downstream Cell Nur	nber	- km2	0 001	0	4	0			
Moon Width of Flam	Poth	Km2	0.991	2.039	2.242	3.303			
Number of Topks in S	au	KIII	0.01	1.01	2.34	2.32			
Outflow Control Dont		-	3	3	3	3			
Outflow Control Deptr	Typoport	CIII	4U 4	4U 4	40	1.67			
Outflow Coefficient - I	exponent	-	4	4	1.07	1.07			
Burboog Dopth	mercept	-	0.5	0.9	0.18	0.2			
Movimum Inflore		cm hm2/dev	U	U	0	0			
Maximum Inflow		nm3/day	0	0	0	0			
		nm3/day	0	0	0	0			
Inflow Seepage Rate		(cm/d) / cm	0	0	0	0			
Inflow Seepage Contr	OLEIEV	cm	0	0	0	0			
Innow Seepage Conc	_	aqq	20	20	20	20			
Outflow Seepage Rat	e tral Elass	(cm/d) / cm	0	0	0.0059	0.0017			
Outflow Seepage Cor	ITTOI Elev	cm	0	0	-46	-46			
Max Outriow Seepage	e Conc	aqq	20	20	20	20			
Seepage Recycle Fra	iction	-	0	0	0.5	0.5			
Seepage Discharge F	raction	-	0	0	0	0			
Initial Water Column C		odd ma/m2	30	30	30	30			
Initial P Storage Per C	Unit Area	mg/m2	500	500	500	500			
Initial Water Column L	Jeptn	CM na	50	50	50	50			
C0 = WC Conc at 0	/m2 P Storag	je ppo	2	2	2	4			
K - Not Sottling Pote	at Stoody Sto	to m/ur	22	22	22	22			
T = Net Setting Rate	at Steady Star	le m/yr	39	20	20.02	60.10			
Zx = Depth Scale Fac		CIII	00	00	00	00			
C0 - Periphyton		ppp	0	0	0	0			
CI - Periphyton		ppu 16m	0	0 00	0 00	0 00			
7x - Periphyton		1/yr	0.00	0.00	0.00	0.00			
Zx - Penphyton	and Minlandiat		0	0	0	0			
Sm = Transition Stora	age Mildpoint	mg/m2	0	0	0	0			
50 = 1 ransition Storag	ge Bandwidth	mg/m2	0	0	0	0			
Output Variables		Unite	1	2	3	A	5	6	0.46
Execution Time		seconds/vr	1 61	3 13	4 66	6 21	2	¥	6
Run Date		-	05/21/04	05/21/04	05/21/04	05/21/04			05/2
Starting Date for Simi	Ilation		05/01/65	05/01/65	05/01/65	05/01/65			05/0
Starting Date for Outr	out	_	05/01/65	05/01/65	05/01/65	05/01/65			05/0
Ending Date		_	04/30/03	04/30/03	04/30/03	04/30/03			04/3
Output Duration		dave	13870	13870	13879	13879			139
Cell Label		aayo	3	5	2	4			Total
Downstream Cell Lab	el		Outflow	Outflow	4	Outflow			i otai C
Surface Area		km2	0.991	2,639	2.242	3.363			9
Mean Water Load		cm/d	1.6	1.5	39	2.4			1
Max Water Load		cm/d	16.3	15.6	40.7	26.3			16
Inflow Volume		hm3/vr	57	14.5	32.0	29.8			52
Inflow Load		ka/vr	554.0	1413 3	3130.6	985.5			500
Inflow Conc		ng/yi	97 7	97.7	97.7	33.1			008
Treated Outflow Volu	me	hm3/vr	56	14.4	20.8	28.7			31
Treated Outflow Load	l	ka/vr	58.0	216.4	985.5	298.7			57
Treated FW/M Outflow	v Conc	ng/yi	10.3	15.1	33.1	10.4			11
Total Outflow Volumo	Conc	hm3/vr	5.6	14.4	20.0	28.7			11
Total Outflow Load		ko/yr	58.0	216 /	23.0	20.7			40
Total FWM Outflow C	onc	ng/ yr	10.3	15.1	33.1	10.4			11
Bypass Volume	0110	hm3/vr	0.00	0.00	0.00	0.00			0.0

Working Draft – July 12, 2004

 Table 10. DMSTA Summary for Expanded STA-6, Using NEWS_2.

DMSTA Input Va	lues	Run Model	Menu						
Input Variable		Units	Value	Case Descri	ption:	Filename:	6 NEW 1_D	ata.xls	
Design Case Name	1	-	NEW6	Used calibr	ation data se	ts from Walke	r; new - STA	b_5 and NEW	15_2
Starting Date for Simi	ulation	-	05/01/65	2656 ac ad	dition to STA	-5			
Ending Date for Simu	lation	-	04/30/03	C139 Anne	x and balanc	e of Unit 2 infl	ows		
Starting Date for Outp	out	-	05/01/65						
Steps Per Day		-	3	Output Var	iable		<u>Units</u>	Value	
Number of Iterations		-	2	Water Balar	nce Error		%	0.0%	
Output Averaging Inte	erval	days	7	Mass Balan	ce Error		%	-0.2%	
Reservoir H2O Resid	ence Time	days	0	Flow-Wtd C	onc - With By	rpass	ppb	13.6	
Max Inflow / Mean Inf	low	-	0	Flow-Wtd C	onc - Without	Bypass	ppb	13.6	
Max Reservoir Storag	je	hm3	0	Geometric N	lean Conc		ppb	10.9	
Reservoir P Decay R	ate	1/yr/ppb	0	95th Percen	tile Conc		ppb	16.9	
Rainfall P Conc		ppb	10	Freq Cell O	utflow > 10 pp	ob	%	39%	
Atmospheric P Load	(Dry)	mg/m2-yr	20	Bypass Loa	d		%	0.0%	
Cell Number>			1	2	3	4	5	6	
		_	3	5	2	4	<u> </u>		7
	Conson	-	STAG 3	STAG 5	STAG 5				
Inflow Erection	CONSELV		0.109674670	0.07702122	0.614004	NEVV3_2			
Downstream Coll New	nhor	-	0.1000/40/9	0.21123132	0.014094	0		1	
Surface Area	nuel	-	0.001	2 620	4	3 262		1	
Moon Width of Flow	Poth	KIIIZ	0.331	2.009	2.242	3.303		1	
Near what of Flow H	am	кm	0.61	1.31	2.34	2.32		1	
Number of Tanks in S	beries	-	3	3	3	3		1	
Outflow Control Dept	n 	cm	40	40	40	60		1	
Outflow Coefficient -	Exponent	-	4	4	1.67	1.67		1	
Outflow Coefficient -	ntercept	-	0.5	0.9	0.18	0.2		1	
Bypass Depth		cm	0	0	0	0			
Maximum Inflow		hm3/day	0	0	0	0			
Maximum Outflow		hm3/day	0	0	0	0			
Inflow Seepage Rate		(cm/d) / cm	0	0	0	0			
Inflow Seepage Contr	rol Elev	cm	0	0	0	0			
Inflow Seepage Conc		ppb	20	20	20	20			
Outflow Seepage Rat	e	(cm/d) / cm	0	0	0.0059	0.0017			
Outflow Seepage Cor	ntrol Elev	cm	0	0	-46	-46			
Max Outflow Seepage	e Conc	nnb	20	20	20	20			
Seenage Recycle Fra	action	-	0	0	0.5	0.5			
Seenage Discharge F	Fraction	_	0	ő	0.0	0.0			
Initial Water Column (Conc	nnh	30	30	30	30			
Initial Water Column	Init Area	php bhp	500	500	500	500			
Initial Motor Column	Donth	ing/inz	500	500	500	500			
	depth a/m2 D Stored		50	50	50	50			-
CU = WC Conc at U	g/m2 P Storag	ge ppb	2	2	2	8			
C1 = WC Conc at 1 g	/m2 P storage	e ppp	22	22	22	22			
K = Net Settling Rate	at Steady Sta	ite m/yr	39	26	25.82	90.40			
Zx = Depth Scale Fac	ctor	cm	60	60	60	60			
C0 - Periphyton		ppb	0	0	0	4			
C1 - Periphyton		ppb	0	0	0	22			
K - Periphyton		1/yr	0.00	0.00	0.00	31.30			
Zx - Periphyton		cm	0	0	0	0			
Sm = Transition Stora	age Midpoint	mg/m2	0	0	0	400			
Sb = Transition Stora	ge Bandwidth	mg/m2	0	0	0	80			
	-	Ŭ							
Output Variables		Units	1	2	3	4	5	6	Overall
Execution Time		seconds/yr	1.63	3.16	4.68	6.26			6.26
Run Date		- 1	05/21/04	05/21/04	05/21/04	05/21/04			05/21/04
Starting Date for Simi	ulation	-	05/01/65	05/01/65	05/01/65	05/01/65			05/01/65
Starting Date for Outr	out	-	05/01/65	05/01/65	05/01/65	05/01/65			05/01/65
Ending Date		-	04/30/03	04/30/03	04/30/03	04/30/03			04/30/03
Output Duration		davs	13879	13879	13879	13879			13879
Cell Label		uays	3	5	2	4			Total Outfl
Downstream Cell Lob			Outflow	Outflow	2	Outflow			- Otar Outin
Surface Area		km2	0.001	2 620	2 2 4 2	3 262			0.2
Moon Water Loop		KIIIZ	0.991	2.039	2.242	3.303			9.2
Max Water Load		cm/d	1.0	1.5	3.9	2.4			1.5
wax water Load		cm/a	16.3	15.6	40.7	26.3			16.1
Inflow Volume		hm3/yr	5.7	14.5	32.0	29.8			52.2
Inflow Load		kg/yr	554.0	1413.3	3130.6	985.5			5097.9
Inflow Conc		ppb	97.7	97.7	97.7	33.1			97.7
Treated Outflow Volu	me	hm3/yr	5.6	14.4	29.8	28.7			48.6
Treated Outflow Load	1	kg/yr	58.0	216.4	985.5	387.2			661.5
Treated FWM Outflow	v Conc	ppb	10.3	15.1	33.1	13.5			13.6
Total Outflow Volume	•	hm3/yr	5.6	14.4	29.8	28.7			48.6
Total Outflow Load		kg/yr	58.0	216.4	985.5	387.2			661.5
Total FWM Outflow C	onc	ppb	10.3	15.1	33.1	13.5			13.6
Bypass Volume		hm3/vr	0.00	0.00	0.00	0.00			0.00

Working Draft – July 12, 2004

Working Draft – July 12, 2004

Table 11. DMSTA Summary for Full Build-out of STA-5, Using SAV_C4. Note: Output for Cell 1B reflects result of proportional loading to cells.

DMSTA Input Values

Warning: One or More Cells Outside of Calib. Range

Input Variable	Units	Value	Case Descript	ion:	Filename:	5 NEW1_Data	rev.xls	_
Design Case Name	-	NEW 3	5 flow-ways;	uniform loading				
Starting Date for Simulation	-	05/01/65	SAV_C4 for S	SAV cells				
Ending Date for Simulation	-	04/30/03						
Starting Date for Output	-	05/01/65						
Steps Per Day	-	3	Output Varia	ble		<u>Units</u>	Value	
Number of Iterations	-	2	Water Balance	e Error		%	0.0%	
Output Averaging Interval	days	7	Mass Balance	Error		%	-0.2%	
Reservoir H2O Residence Time	days	0	Flow-Wtd Con	ic - With Bypass	;	ppb	20.2	
Max Inflow / Mean Inflow	-	0	Flow-Wtd Con	c - Without Byp	ass	ppb	20.2	
Max Reservoir Storage	hm3	0	Geometric Me	an Conc		ppb	12.1	
Reservoir P Decay Rate	1/yr/ppb	0	95th Percentil	e Conc		ppb	26.5	
Rainfall P Conc	ppb	10	Freq Cell Outf	low > 10 ppb		%	72%	
Atmospheric P Load (Dry)	mg/m2-yr	20	Bypass Load			%	0.0%	
Cell Number>		1	2	3	4	5	6	-
Cell Label	-	1A	1B	2A	2B	3A	3B	
Vegetation Type	>	EMERG	SAV_C4	EMERG	SAV_C4	EMERG	SAV_C4	
Inflow Fraction	-	0.2	0	0.2	0	0.6	0	
Downstream Cell Number	-	2	0	4	0	6	0	
Surface Area	km2	3.379	4.937	3.379	4.937	3.379	4.937	
Iviean Width of Flow Path	km	1.56	1.56	1.56	1.56	1.56	1.56	
Number of Tanks in Series	-	3	3	3	3	3	3	
Outriow Control Depth	cm	40	60	40	60	40	60	
Outriow Coefficient - Exponent	-	2.8	2.15	2.91	1.78	2.91	1.78	
Outriow Coefficient - Intercept	-	1.57	2.02	1.51	2.1	1.51	2.1	
Bypass Depth	cm	0	0	0	0		0	
Maximum Inflow	hm3/day	0	0	0	0	0	0	
Maximum Outflow	nm3/day	0	0	0	0	0	0	
Inflow Seepage Rate	(cm/d) / cm	0	0	0	0	0	0	
Inflow Seepage Control Elev	cm	0	0	0	0	0	0	
Inflow Seepage Conc	ррр	20	20	20	20	20	20	
Outflow Seepage Rate	(cm/d) / cm	0.0015	0.0014	0.0015	0.0015	0.0015	0.0015	
Outriow Seepage Control Elev	cm	-46	-38	-46	-38	-46	-38	
Max Outflow Seepage Conc	aqq	20	20	20	20	20	20	
Seepage Recycle Fraction	-	0.5	0.5	0.5	0.5	0.5	0.5	
Seepage Discharge Fraction	-	0	0	0	0	0	0	
Initial Water Column Conc	aqq	30	30	30	30	30	30	
Initial P Storage Per Unit Area	mg/m2	500	500	500	500	500	500	
Initial Water Column Depth	cm	50	50	50	50	50	50	
C0 = WC Conc at 0 g/m2 P Storage	ррр	4	4	4	4	4	4	
CT = WC Conc at T g/m2 P storage	dqq	22	22	22	22	22	22	
K = Net Settling Rate at Steady State	m/yr	10	80	15.00	80.10	15.00	80.10	
2x = Depth Scale Factor	cm	00	60	60	60	00	60	
C0 - Periphyton	ppp	0	0	0	0	0	0	
CT - Penphyton	ppu 4.6m	0	0 00	0	0 00	0 00	0	
r - renpnyton	1/yr	0.00	0.00	0.00	0.00	0.00	0.00	
2x - Periphyton Sm - Transition Storege Midssint	cm ma/m2	0	0	0	0	0	0	
Shi = Transition Storage Midpoint	mg/m2	0	0	0	0	0	0	
SD = mansilion Storage Bandwidth	mg/mz	U	U	0	U	U	U	_
Output Variables	Unite	1	2	2	4	5	e	Overell
Execution Time	seconde/ur	1.58	3 11	<u>2</u> 4 61	<u>4</u> 6 1 1	<u>2</u> 763	<u>0</u> 9.13	0 12
Run Date	-	07/11/04	07/11/04	07/11/04	07/11/04	07/11/04	07/11/04	07/11/0/
Starting Date for Simulation		05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65
Starting Date for Output		05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65
Ending Date		04/30/03	04/30/03	04/30/03	04/30/03	04/30/03	04/30/03	04/30/03
Output Duration	dave	13870	13870	13870	13870	13870	13870	13870
Cell Label	uays	14	1B	24	2B	34	3B	Total Outfl
Downstream Cell Label		1B	Outflow	2R	Outflow	3B	Outflow	-
Surface Area	km2	3 379	4 937	3 379	4 937	3 379	4 937	24.9
Mean Water Load	cm/d	27	1.8	27	1.8	8.2		24.9
Max Water Load	cm/d	26.0	18.1	26.0	18.0	77.9	53.9	17.6
Inflow Volume	hm3/vr	33.0	32.6	33.0	32.6	101.7	100.3	160 4
Inflow Load	ka/vr	6738.0	2889.4	6738.0	2831.6	20213.9	13921 5	33680 8
Inflow Conc	ng/yi	198.8	88.5	198.8	86.7	198.8	138.7	198.8
Treated Outflow Volume	hm3/vr	32.6	30.0	32.6	30.8	100.3	98.4	160.1
Treated Outflow Load	kolur	2880 /	362.0	2831.6	358.8	13021 5	2515 5	3236.2
Treated FWM Outflow Conc	ng/yi	88 5	11 7	86.7	11.6	138.7	2515.5	20.2
Total Outflow Volume	hm3/vr	32.6	30.0	32.6	30.8	100.3	QR /	160.1
Total Outflow Load	ko/vr	2889.4	362.0	2831.6	358.8	13921 5	2515 5	3236.3
Total FWM Outflow Conc	nph	88.5	11 7	86.7	11.6	138 7	25.6	20.2
Bypass Volume	hm3/vr	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bypass Load	ko/vr	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Working Draft – July 12, 2004

Table 12. DMSTA Summary for Full Build-out of STA-5, Using NEWS_2 Note: Output for Cell 1B reflects result of proportional loading to cells.

DMSTA Input Values

Warning: One or More Cells Outside of Calib. Range

Innut Variable	Unito	Value			Filmen			
Design Case Name	<u>units</u>	NEW 4	5 flow-ways:	uniform loading	Filename:	5 NEW1_Data	rev.xis	٦
Starting Date for Simulation	_	05/01/65	NEWS 2 for	SAV cells				
Ending Date for Simulation	-	04/30/03						
Starting Date for Output	-	05/01/65						
Steps Per Day	-	3	Output Varia	ble		Units	Value	-
Number of Iterations	-	2	Water Balance	e Error		%	0.0%	
Output Averaging Interval	days	7	Mass Balance	Error		%	-0.2%	
Reservoir H2O Residence Time	days	0	Flow-Wtd Cor	nc - With Bypass	;	dad	26.0	
Max Inflow / Mean Inflow	1	0	Flow-Wtd Cor	nc - Without Byp	ass	ppb	26.0	
Max Reservoir Storage	hm3	0	Geometric Me	ean Conc		ppb	14.0	
Reservoir P Decay Rate	1/yr/ppb	0	95th Percentil	e Conc		ppb	31.7	
Rainfall P Conc	ppb	10	Freq Cell Out	flow > 10 ppb		%	75%	
Atmospheric P Load (Dry)	mg/m2-yr	20	Bypass Load			%	0.0%	
Cell Number>		1	2	3	4	5	6	-
Cell Label	-	1A	1B	2A	2B	3A	3B	
Vegetation Type	>	EMERG	NEWS_2	EMERG	NEWS_2	EMERG	NEWS_2	
Inflow Fraction	-	0.2	0	0.2	0	0.6	0	
Downstream Cell Number	-	2	0	4	0	6	0	
Surface Area	Km2	3.379	4.937	3.379	4.937	3.379	4.937	
Number of Topks in Carias	km	1.56	1.56	1.56	1.56	1.56	1.56	
Number of Tanks in Series	-	3	3	3	3	3	3	
Outflow Coefficient - Exponent	Cm	40	2 15	40	1 79	40	1 79	
Outflow Coefficient - Exponent		∠.0 1.57	2.10	2.91	21	2.91	21	
Bynass Denth	- cm	0	2.02	0	2.1	0		
Maximum Inflow	hm3/day	0	0	0	0	0	0	
Maximum Outflow	hm3/day	0	ő	0	0	ő	ŏ	
Inflow Seepage Rate	(cm/d) / cm	Ő	0	0	Ő	0	ő	
Inflow Seepage Control Elev	cm	0	Ō	Ō	Ō	Ō	Ō	
Inflow Seepage Conc	ppb	20	20	20	20	20	20	
Outflow Seepage Rate	(cm/d) / cm	0.0015	0.0014	0.0015	0.0015	0.0015	0.0015	
Outflow Seepage Control Elev	cm	-46	-38	-46	-38	-46	-38	
Max Outflow Seepage Conc	ppb	20	20	20	20	20	20	
Seepage Recycle Fraction	-	0.5	0.5	0.5	0.5	0.5	0.5	
Seepage Discharge Fraction	-	0	0	0	0	0	0	
Initial Water Column Conc	ppb	30	30	30	30	30	30	
Initial P Storage Per Unit Area	mg/m2	500	500	500	500	500	500	
Initial Water Column Depth	cm	50	50	50	50	50	50	
C0 = WC Conc at 0 g/m2 P Storage	ppb	4	8	4	8	4	8	
C1 = WC Conc at 1 g/m2 P storage	ppb	22	22	22	22	22	22	
K = Net Settling Rate at Steady State	m/yr	16	90	15.66	90.40	15.66	90.40	
ZX = Depth Scale Factor	cm	60	60	60	60	60	60	
C0 - Periphyton	ppp	0	4	0	4	0	4	
K Poriphyton	16m	0.00	21 20	0.00	21 20	0.00	21 20	
Zy - Periphyton	cm	0.00	0	0.00	0	0.00	0	
Sm = Transition Storage Midpoint	ma/m2	0	400	0	400	0	400	
Sb = Transition Storage Bandwidth	ma/m2	0	80	0	80	0	80	
		U U						-
Output Variables	Units	1	2	3	4	5	6	Overa
Execution Time	seconds/yr	1.58	3.13	4.63	6.18	7.71	9.26	9.26
Run Date	- 1	07/11/04	07/11/04	07/11/04	07/11/04	07/11/04	07/11/04	07/11/
Starting Date for Simulation	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/
Starting Date for Output	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65	05/01/
Ending Date	-	04/30/03	04/30/03	04/30/03	04/30/03	04/30/03	04/30/03	04/30/
Output Duration	days	13879	13879	13879	13879	13879	13879	1387
Cell Label		1A	1B	2A	2B	3A	3B	Total Ou
Downstream Cell Label		1B	Outflow	2B	Outflow	3B	Outflow	-
Surface Area	km2	3.379	4.937	3.379	4.937	3.379	4.937	24.9
Wex Water Load	cm/d	2.7	1.8	2.7	1.8	8.2	5.6	1.9
Iviax v/ater Load	cm/a	26.0	18.1	26.0	18.0	17.9	53.9	17.6
Innow Volume	nm3/yr	33.9	32.6	33.9	32.6	20212.0	12021 5	169.
	kg/yr	109 9	2009.4	109 9	2031.0	20213.9	13921.5	33085
Treated Outflow Volume	http://	32.6	30.0	32.6	30.0	100.2	00 /	198.
Treated Outflow Load	ka/yr	2889 4	514.3	2831.6	50.8	13921 5	3144 6	4167
Treated FWM Outflow Conc	nnh	88.5	16.6	86.7	16.5	138.7	32.0	26
Total Outflow Volume	hm3/vr	32.6	30.9	32.6	30.8	100.7	98.4	160
Total Outflow Load	ka/vr	2889.4	514.3	2831.6	508.8	13921.5	3144.6	4167
Total FWM Outflow Conc	daa	88.5	16.6	86.7	16.5	138.7	32.0	26.
Bypass Volume	hm3/vr	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bypass Load	kg/yr	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Working Draft – July 12, 2004

Table 13. DMSTA Summary for Full Build-out of STA-6, Using SAV_C4.DMSTA Input Values

Input Variable	Units	Value	Case Descript	ion:	Filename:	6 NEW 1 Data	rev.xls	
Design Case Name	-	NEW11	Existing, use	calibration data	sets from Walk	er; new - EMERO	G and SAV_C4	
Starting Date for Simulation	-	05/01/65	720 acres in	Cell 1				
Ending Date for Simulation	-	04/30/03	C139 Annex	only				
Starting Date for Output	-	05/01/65	proportional l	oading				
Steps Per Day	-	3	Output Varia	ble - Energy		Units	Value	
Number of iterations	- davs	2	Water Balance			%	0.0%	
	days	6	Flow Wtd Con	CITUI		70 nnh	-0.1%	
Max Inflow / Mean Inflow	uays	0	Flow-Wtd Con	c - Without Bypass		ppb	9.9	
Max Reservoir Storage	hm3	ő	Geometric Me	an Conc	200	ppb	7.6	
Reservoir P Decay Rate	1/yr/ppb	Ő	95th Percentil	e Conc		ppb	12.5	
Rainfall P Conc	ppb	10	Freq Cell Outf	low > 10 ppb		%	12%	
Atmospheric P Load (Dry)	mg/m2-yr	20	Bypass Load			%	0.0%	
Cell Number>		<u>1</u>	2	3	4	5	<u>6</u>	_
Cell Label	-	3	5	1	2	4		
Vegetation Type	>	STA6_3	STA6_5	EMERG	SAV_C4	SAV_C4		
Inflow Fraction	-	0.082380632	0.210154674	0.707464694	0	0		
Surface Area	- km2	0.002	2 520	2 015	1 969	2 725		
Mean Width of Flow Path	km	0.552	2.330	2.913	2 34	2 32		
Number of Tanks in Series	-	3	3	3	3	3		
Outflow Control Depth	cm	40	40	40	40	60		
Outflow Coefficient - Exponent	-	4	4	1.67	1.67	1.67		
Outflow Coefficient - Intercept	-	0.5	0.9	0.2	0.18	0.2		
Bypass Depth	cm	0	0	0	0	0		
Maximum Inflow	hm3/day	0	0	0	0	0		
Maximum Outflow	hm3/day	0	0	0	0	0		
Inflow Seepage Rate	(cm/d) / cm	0	0	0	0	0		
Inflow Seepage Control Elev	cm	0	0	0	0	0		
Cutflow Seepage Conc	ppp (cm/d) / cm	20	20	20	20	20		
Outflow Seepage Control Elev	(cm/d) / cm	0	0	0	-46	-46		
Max Outflow Seepage Conc	daa	20	20	20	20	20		
Seepage Recycle Fraction	-	0	0	0	0.5	0.5		
Seepage Discharge Fraction	-	0	0	0	0	0		
Initial Water Column Conc	ppb	30	30	30	30	30		
Initial P Storage Per Unit Area	mg/m2	500	500	500	500	500		
Initial Water Column Depth	cm	50	50	50	50	50		_
C0 = WC Conc at 0 g/m2 P Storage	ppb	2	2	4	4	4		
C1 = WC Conc at 1 g/m2 P storage	ppb	22	22	22	22	22		
K = Net Settling Rate at Steady State	m/yr	39	20	15.66	80.10	80.10		
CO = Depin Scale Factor	nnh	00	00	0	0	0		
C1 - Periphyton	ppb	0	0	Ő	Ő	Ő		
K - Periphyton	1/vr	0.00	0.00	0.00	0.00	0.00		
Zx - Periphyton	cm	0	0	0	0	0		
Sm = Transition Storage Midpoint	mg/m2	0	0	0	0	0		
Sb = Transition Storage Bandwidth	mg/m2	0	0	0	0	0		
Output Variables	Units	1	2	3	4	5	<u>6</u>	<u>Overall</u>
Execution TIMe Run Data	seconas/yr	1.61	3.11	4.61	6.13	7.63		7.63
Starting Date for Simulation		05/01/65	05/01/65	05/01/65	05/01/65	05/01/65		05/01/65
Starting Date for Output	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65		05/01/65
Ending Date	-	04/30/03	04/30/03	04/30/03	04/30/03	04/30/03		04/30/03
Output Duration	days	13879	13879	13879	13879	13879		13879
Cell Label		3	5	1	2	4		Total Outflo
Downstream Cell Label		Outflow	Outflow	2	4	Outflow		-
Surface Area	km2	0.992	2.530364372	2.914979757	1.867746289	3.735492578		12.0
Mean Water Load	cm/d	1.0	1.0	3.0	4.6	2.2		1.0
Max Water Load	cm/d	10.9	10.9	31.9	51.1	25.3		10.9
Inflow Load	hm3/yr	3.7	9.4	31.5	31.4	29.8		44.b
Inflow Conc	nnh	104.2	104.2	104.2	45.1	14 9		104.3.9
Treated Outflow Volume	hm3/vr	3.6	9.3	31.4	29.8	28.6		41.5
Treated Outflow Load	ka/vr	30.3	114.4	1417.1	443.3	265.1		409.9
Treated FWM Outflow Conc	ppb	8.4	12.3	45.1	14.9	9.3		9.9
Total Outflow Volume	hm3/yr	3.6	9.3	31.4	29.8	28.6	33648.8	41.5
Total Outflow Load	kg/yr	30.3	114.4	1417.1	443.3	265.1		409.9
Total FWM Outflow Conc	ppb	8.4	12.3	45.1	14.9	9.3		9.9
Bypass Volume	hm3/yr	0.00	0.00	0.00	0.00	0.00		0.00
Bypass Load	kg/yr	0.00	0.00	0.00	0.00	0.00		0.00

Working Draft – July 12, 2004

 Table 14. DMSTA Summary for Full Build-out of STA-6, Using NEWS_2.

 DMSTA Input Values

Input Variable	Units	Value	Case Descript	ion:	Filename:	6 NEW 1 Data	rev.xls	
Design Case Name	-	NEW10	Existing, use	calibration data	sets from Walk	er; new - EMERC	G and NEWS_2	2
Starting Date for Simulation	-	05/01/65	720 acres in	Cell 1				
Ending Date for Simulation	-	04/30/03	C139 Annex	only				
Starting Date for Output	-	05/01/65	proportional I	bading				
Steps Per Day	-	3	Output varia	<u>Die</u> Error		Units	value	
Output Averaging Interval	- dave	2	Mass Balance	Error		70 0/_	-0.1%	
Reservoir H2O Residence Time	days	0	Flow-Wtd Cor	- With Bypass		nnh	12.0	
Max Inflow / Mean Inflow	-	ŏ	Flow-Wtd Cor	ic - Without Bypass	ass	dad	12.0	
Max Reservoir Storage	hm3	0	Geometric Me	an Conc		ddd	8.7	
Reservoir P Decay Rate	1/yr/ppb	0	95th Percentil	e Conc		ppb	15.8	
Rainfall P Conc	ppb	10	Freq Cell Out	low > 10 ppb		%	27%	
Atmospheric P Load (Dry)	mg/m2-yr	20	Bypass Load			%	0.0%	
Cell Number>		1	2	3	4	5	<u>6</u>	-
Cell Label		3 STAC 2	5 STAC E	1 EMERC				
Inflow Eraction	>	0.082380632	0 210154674	0 707/6/69/	NEV/5_2	INEVVS_2		
Downstream Cell Number	-	0.002300032	0.210134074	4	5	0		
Surface Area	km2	0.992	2.530	2.915	1.868	3.735		
Mean Width of Flow Path	km	0.61	1.31	1.60	2.34	2.32		
Number of Tanks in Series	-	3	3	3	3	3		
Outflow Control Depth	cm	40	40	40	40	60		
Outflow Coefficient - Exponent	-	4	4	1.67	1.67	1.67		
Outflow Coefficient - Intercept	-	0.5	0.9	0.2	0.18	0.2		
Bypass Depth	cm	0	0	0	0	0		
Maximum Outflow	hm3/day	0	0	0				
Inflow Seenage Rate	(cm/d) / cm	0	0	0	0	0		
Inflow Seepage Control Elev	cm	ŏ	ŏ	ŏ	ŏ	ŏ		
Inflow Seepage Conc	dad	20	20	20	20	20		
Outflow Seepage Rate	(cm/d) / cm	0	0	0	0.0059	0.0017		
Outflow Seepage Control Elev	cm	0	0	0	-46	-46		
Max Outflow Seepage Conc	ppb	20	20	20	20	20		
Seepage Recycle Fraction	-	0	0	0	0.5	0.5		
Seepage Discharge Fraction	-	0	0	0	0	0		
Initial Water Column Conc	ppp mg/m2	30	30	30	30	30		
Initial P Storage Per Onit Area	cm	50	50	50	50	50		
$C0 = WC Conc at 0 g/m^2 P Storage$	daa	2	2	4	8	8		
C1 = WC Conc at 1 g/m2 P storage	ppb	22	22	22	22	22		
K = Net Settling Rate at Steady State	m/yr	39	26	15.66	90.40	90.40		
Zx = Depth Scale Factor	cm	60	60	60	60	60		
C0 - Periphyton	ppb	0	0	0	4	4		
C1 - Periphyton	ppb	0	0	0	22	22		
K - Periphyton	1/yr	0.00	0.00	0.00	31.30	31.30		
Zx - Periphyton	cm mg/m2	0	0	0	400	400		
Sb = Transition Storage Bandwidth	mg/m2	0	0	0	80	80		
ob – Transition Otorage Bandwidth	mg/m2		Ū	Ŭ	00	00		_
Output Variables	Units	1	2	3	4	5	6	Overall
Execution Time	seconds/yr	1.58	3.08	4.58	6.11	7.66		7.66
Run Date	-	07/11/04	07/11/04	07/11/04	07/11/04	07/11/04		07/11/04
Starting Date for Simulation	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65		05/01/65
Starting Date for Output	-	05/01/65	05/01/65	05/01/65	05/01/65	05/01/65		05/01/65
Output Duration	- ave	13870	13870	13870	13870	13870		13870
Cell Label	uays	3	5	1	2	4		Total Outflo
Downstream Cell Label		Outflow	Outflow	2	4	Outflow		-
Surface Area	km2	0.992	2.530364372	2.914979757	1.867746289	3.735492578		12.0
Mean Water Load	cm/d	1.0	1.0	3.0	4.6	2.2		1.0
Max Water Load	cm/d	10.9	10.9	31.9	51.1	25.3		10.9
Inflow Volume	hm3/yr	3.7	9.4	31.5	31.4	29.8		44.6
Inflow Load	kg/yr	382.6	975.9	3285.4	1417.1	595.0		4643.9
Innow Conc	ppb bm2/ur	104.2	104.2	104.2	45.1	20.0	22649.9	104.2
Treated Outflow Load	ko/yr	3.0 30.3	9.3	31.4 1417 1	29.8	20.0	33048.8	41.5
Treated FWM Outflow Conc	pph	8.4	12.3	45.1	20.0	12.3		12.0
Total Outflow Volume	hm3/vr	3.6	9.3	31.4	29.8	28.6		41.5
Total Outflow Load	kg/yr	30.3	114.4	1417.1	595.0	351.3		496.1
Total FWM Outflow Conc	ppb	8.4	12.3	45.1	20.0	12.3		12.0
Bypass Volume	hm3/yr	0.00	0.00	0.00	0.00	0.00		0.00
Bypass Load	kg/yr	0.00	0.00	0.00	0.00	0.00		0.00

Working Draft – July 12, 2004

3.0 Summary

A summary of the projected performance of the expanded treatment areas is provided in Table 15. Copies of all data sets and DMSTA modeling results are available upon request.

STA	Est. Ave. Annua	l Discharge	Estimated TP Concentrations				
	Outflow (ac ft/yr)	TP Load (kg/yr)	Flow-weighted Mean (ppb)	Geometric Mean (ppb)			
STA-2							
LTP	222,600	4.59 - 7.52	17 - 28	10 - 14			
Expanded	236,042	3.79 - 4.38	13 - 15	10 - 12			
STA-5							
LTP	125,500	3.03 - 4.55	20 - 30	10 - 13			
Expanded	129,536	2.43 - 3.48	15 - 22	10 - 12			
STA-6							
LTP	35,100	0.75 - 1.06	17 - 24	10 - 13			
This Analysis	39,431	0.57 - 0.66	12 - 14	10 - 11			
Full-build out							
of Comp. C							
STA-5	132,134	1.81 - 2.57	12 - 17	10			
STA-6	33,649	0.41 - 0.50	10 - 12	10			

Table 15. Summary Of Phosphorus Reduction Proje	ections
---	---------

Note: STA-2 and STA-6 Section 1 enhancements were not simulated.